Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Силы взаимодействия двух проводников.




Лекция№10. ЭЛЕКТРОДИНАМИЧЕСКОЕ ВЗАИМОДЕЙСТВИЕ ПРОВОДНИКОВ С ТОКАМИ В СХЕМАХ ЭНЕРГОУСТАНОВОК.

Оглавление

10.1 Силы взаимодействия двух проводников. 1

10.2 Силы в трехфазной системе проводников. 3

10.3 Электродинамическая стойкость жёстких проводников. 4

10.4 Выбор изоляторов. 5

10.5 Электродинамическая стойкость гибких проводников. 6

10.6 Электродинамическая стойкость аппаратов. 7

 

При КЗ проводники и аппараты подвергаются воздействию значительных электродинамических сил, которые могут достигать 4000 – 16000 Н. Эти силы могут вызвать остаточную деформацию жёстких проводников, схлестывание гибких проводников, вызвать отказ во включении выключателей или самопроизвольное отключение разъединителей. Чтобы этого не случилось, все системы токоведущих частей и электрические аппараты проверяются на электродинамическую стойкость при проектировании первичной электрической схемы.

Из физики известно, что на элемент проводника dl с током i в магнитном поле с индукцией B действует сила dF=iBdlsinα. Магнитное поле может быть создано другим проводником с током, тогда говорят о взаимодействии двух проводников с токами.

Магнитную индукцию от проводника с током можно определить с помощью закона Био-Савара, но иногда бывает удобнее определить В с помощью закона полного тока: .

Силы взаимодействия двух проводников.

Часто взаимодействие между проводниками в схемах энергоустановок сводится к взаимодействию двух параллельных проводников с токами. Рассмотрим этот случай подробнее (Рис.10.1). Пусть проводники длиной l находятся на расстоянии а. Ток в одном проводнике i1, в другом i2. Будем считать, что l»а (это часто имеет место на практике), тогда для вычисления индукции В1 от первого проводника в районе второго воспользуемся законом полного тока.

 

Рис. 10.1 Взаимодействие двух проводников с токами и определение направления силы с помощью правила левой руки

 

В качестве контура интегрирования L выберем окружность с радиусом а. Тогда получим , т.к. в силу симметрии В1=const на контуре L, то можно записать . Из последнего выражения можно записать для индукции от первого проводника в районе второго: . Зная индукцию В1, можно определить силу dF2 действующую на элемент dl2 второго проводника с током i2.

.

В нашем случае sin α=1, т.к. α=π/2, поэтому сила, действующая на весь второй проводник:

.

В практических расчетах динамической стойкости пользуются понятием погонной силы fпог=F/l [Н/м]. Для нашего случая с учётом того, что μ0=4π10-7Гн/м, выражение для погонной силы примет вид:

.

Т.е. погонная сила пропорциональна произведению токов во взаимодействующих проводниках и обратнопропорциональна расстоянию между ними.

В предыдущих формулах предполагалось, что взаимодействующие проводники бесконечно тонкие. Для проводников конечного сечения:

, где кф – коэффициент формы проводника, значения которого приводится в справочниках.





Поделиться с друзьями:


Дата добавления: 2017-03-12; Мы поможем в написании ваших работ!; просмотров: 389 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2431 - | 2318 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.