Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Найти экстремумы функции(максимум и минимум)




Порядок выполнения работы

 

Определите приблизительно максимальное и минимальное значение функции F (x) на заданном отрезке. Запишите это приближенное значение в любую свободную ячейку. Относительно этого значения запишите функцию (желательно в ячейке справа от аргумента). С помощью команды Поиск решения найдите максимум и минимум вашей функции.

 

Сделайте выводы по всем методам поиска и найденным значениям.


Приложение 2

Построение графика системы уравнений.

1. Построить

 

на[-2;1,5]с шагом 0,1

Решение:

а) Табулируем систему уравнений.

В ячейку А9 пишем слово аргумент,

в В9 вводим слово функция;

в А10 записываем - 2, в А11 - 1,9

и заполняем до - А45 автозаполнением.

б) В ячейку В10 записываем систему уравнений в виде, принятом в Excel.

=ЕСЛИ(А10<0;А10^2;ЕСЛИ(А10=0;0;КОРЕНЬ(А10))) и распространяем ее до В45 автозаполнением.

в) По столбцу В строим график (ход построения подробно описан в приложении 5)

Полученный график системы уравнений


Приложение 3

Решение систем линейных уравнений

I Решение систем линейных уравнений методом Крамера.

Пусть задана система линейных уравнений

Неизвестные x1, x2, …, xn вычисляются по формулам:

D – определитель матрицы А,

Di – определитель матрица, полученный из матрицы А путем замены i -го столбца вектором b.

, , , ,

.

 

Пример 1. Решить систему линейных уравнений методом Крамера.

Запишем в табличном процессоре Microsoft Office Excel 2007 матрицы, которые понадобятся нам при вычислениях (рис. 43).

Рис. 43. Исходные данные

Найдем определители D, D1, D2, и D3, используя математическую функцию МОПРЕД (рис. 44).

Рис. 44. Вычисление определителей

 

Корни уравнения найдем по формулам:

В результате всех вычислений должны получиться следующие данные:

Рис. 45. Вычисление корней системы уравнений

 

II Решение систем линейных уравнений матричным методом

Пусть дана система линейных уравнений

Эту систему можно представить в матричном виде: А·Х=В, где

, , .

Умножим систему линейных алгебраических уравнений А·Х=В слева на матрицу, обратную к А. Тогда система уравнений примет вид:

А-1·А·Х=А-1·В.

Так как А-1·А=Е (единичная матрица), то получим Е·Х=А-1·В.

Таким образом, вектор неизвестных вычисляется по формуле: Х=А-1·В.

 

Пример 2. Решить систему линейных уравнений матричным методом.

Запишем в табличном процессоре матрицу А и столбец свободных
членов В (рис. 46).

Рис. 46. Исходные данные

Нам необходимо найти обратную матрицу А-1, для этого:

1. выделите диапазон ячеек В8:D10;

2. вызовите функцию МОБР;

3. в появившемся диалоговом окне заполните поле ввода Матрица. Это поле должно содержать диапазон ячеек, в котором хранится исходная матрица, то есть В2:D4, нажмите кнопку ОК;

4. В первой ячейке выделенного диапазона появиться некоторое число. Чтобы получить всю обратную матрицу, необходимо нажать клавишу F2, для перехода в режим редактирования, а затем одновременно клавиши Ctrl+Shift+Enter (рис. 47).

Рис. 47. Обратная матрица

Осталось найти вектор неизвестных по формуле Х=А-1·В, для этого:

1. выделите диапазон ячеек G8:G10;

2. вызовите функцию МУМНОЖ;

3. в поле для первой матрицы укажите диапазон В8:D10;

4. в поле для второй матрицы укажите диапазон G2:G4;

5. нажмите кнопку ОК.

В результате должны получиться следующие значения:

 

Рис. 48. Вычисление корней системы уравнений

 

Самостоятельно сделайте проверку, для этого умножьте матрицу А на Х. В результате должен получиться столбец В.

 





Поделиться с друзьями:


Дата добавления: 2017-03-12; Мы поможем в написании ваших работ!; просмотров: 317 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2648 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.