Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Производная постоянной величины.

Определение точки разрыва

Точка , в которой нарушено хотя бы одно из трех условий непрерывности функции, а именно:

1. функция определена в точке и ее окрестности;

2. существует конечный предел функции в точке ;

3. это предел равен значению функции в точке , т.е.

Точка разрыва первого рода

Если в точке существуют конечные пределы и , такие, что , то точка называется точкой разрыва первого рода.

Точка разрыва второго рода

Если хотя б один из пределов или не существует или равен бесконечности, то точка называется точкой разрыва второго рода.

Точка устранимого разрыва


Если существуют левый и правый пределы функции в точке и они равны друг другу, но не совпадают со значением функции в точке : или функция не определена в точке , то точка называется точкой устранимого разрыва.

 

 

11.Производная функции, её геометрический и механический смысл.

 

Производная. Рассмотрим некоторую функцию y = f (x) в двух точках x 0 и x 0 + : f (x 0) и f (x 0 + ). Здесь через обозначено некотороемалое изменение аргумента, называемое приращением аргумента; соответственно разность между двумя значениями функции: f (x 0 + ) - f (x 0)называется приращением функции. Производной функции y = f (x) в точке x 0называется предел:


Если этот предел существует, то функция f (x) называется дифференцируемой в точке x 0. Производная функции f (x) обозначается так:

Геометрический смысл производной. Рассмотрим график функции y = f (x):


Из рис.1 видно, что для любых двух точек A и B графика функции:


где - угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точкуB, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.

Уравнение касательной. Выведем уравнение касательной к графику функции в точке A (x 0, f (x 0)). В общем случае уравнение прямой с угловым коэффициентом f ’(x 0) имеет вид:

y = f ’(x 0) · x + b.

Чтобы найти b,воспользуемся тем, что касательная проходит через точку A:

f (x 0) = f ’(x 0) · x 0 + b,

отсюда, b = f (x 0) – f ’(x 0) · x 0, и подставляя это выражение вместо b, мы получим уравнение касательной:

y = f (x 0) + f ’(x 0) · (x – x 0).

Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси, причём закон движения задан: координата x движущейся точки – известная функция x (t) времени t. В течение интервала времени от t 0 до t 0 + точка перемещается на расстояние: x (t 0 + ) - x (t 0) = , а её средняя скорость равна: va = / . При 0 значение средней скорости стремится к определённой величине, которая называется мгновенной скоростью v (t 0) материальной точки в момент времени t 0. Но по определению производной мы имеем:

отсюда, v (t 0) = x’ (t 0), т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени: a = v’ (t).

 

12. Основные правила дифференцирования.

Операция дифференцирования или нахождения производной функции обладает фундаментальным свойством линейности. Это свойство упрощает нахождение производных функций, которые образованы из основных элементарных функций с помощью операций сложения и умножения на постоянное число. Простейшие правила дифференцирования позволяют вычислять производные таких функций без использования формального определения производной. Рассмотрим эти правила более подробно.

Производная постоянной величины.

Если f(x)=C, тоf′(x)=C′=0.Доказательство этого правила рассмотрено на странице Определение производной.



<== предыдущая лекция | следующая лекция ==>
Эту величину называют скоростью удаления. | D) если они лежат на одной прямой или на параллельных прямых
Поделиться с друзьями:


Дата добавления: 2017-03-12; Мы поможем в написании ваших работ!; просмотров: 927 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2390 - | 2261 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.