Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Обобщенная постановка смешанной краевой задачи для уравнения параболического типа




Рассмотрим краевую задачу для нестационарного уравнения теплопроводности

(2.16)

Зададим начальное условие и различные граничные условия на разных участках границы:

(2.17)

Обозначим через функцию на нижнем временном слое ( ‑ шаг сетки по ) и запишем полудискретизованную по времени неявную схему для уравнения (2.16). Домножим её на пробную функцию и проинтегрируем по области . Будем иметь

Применяя формулу Гаусса-Остроградского и учитывая при этом граничные условия (2.17), получим

(2.18)

Это уравнение должно быть дополнено граничным условием Дирихле (2.17). Призаписи (2.18) учтено, что пробная функция равна нулю на участке границы .

В дальнейшем для простоты будем считать, что коэффициенты постоянны. Кроме того, удобно доопределить параметры нулём на той части границы , где они не заданы. Тогда интегральное тождество (2.18) можно записать чуть более компактно:

(2.19)

Замечание 1. Правая часть исходного уравнения может содержать как распределенные, так и сосредоточенные источники тепла, например

,

где ‑ дельта-функция Дирака. В этом случае первый интеграл в правой части (2.19) будет равен

. (2.20)

Замечание 2. Интегральное тождество (2.19) не учитывает граничного условия Дирихле на ; оно должно учитываться отдельно. Для этого существуют несколько приёмов, основанных на модификации матрицы и правой части системы сеточных (алгебраических) уравнений, которые будут построены на основе интегрального тождества (2.19). Однако можно указать способ приближенного учета условий Дирихле уже на стадии записи интегрального тождества. Он состоит в том, чтобы вместо первого из граничных условий (2.17) записать граничное условие 3-го рода в виде

Очевидно, что если разделить это равентство на очень большое число , то получим следующее приближение:

.

При этом структура интегрального тождества (2.19) не меняется, следует лишь должным образом задать коэффициенты на разных участках границы.

Лекция 3. Система уравнений МКЭ

Сетка МКЭ

Покроем область сеткой конечных элементов , , так чтобы .

Тогда . Звёздочка означает, что при интегрировании по границе в сумму входят лишь те конечные элементы , границы которых хотя частично лежат на границе области .

Рассмотрим отдельный конечный элемент. Например это многоугольник. Пусть он имеет узлов. Тогда можно ввести базисные функции этого элемента . Эти функции линейно независимы и нормированы так, что . Произвольная функция на элементе может быть представлена разложением по базису

(3.1)

Индекс обозначает принадлежность к -му элементу. В дальнейшем, если это не приводит к недоразумениям, индекс часто будем опускать. Индекс используется для локальной нумерации узлов конечного элемента. Следует отметить, что локальные узлы элемента могут совпадать с вершинами многоуголника , а могут и не совпадать с ними, как показано на рис. 3.1. Наряду с локальной вводят сквозную глобальную нумерацию узлов. Соответствие локальных и глобальных номеров, их координаты, а также связность (т.е. указание, какие узлы образуют элемент) задаётся с помощью двух основных таблиц, которые представляют МКЭ-сетку.

Рис. 3.1. Трехузловой, шестиузловой и десятиузловой
треугольные конечные элементы

 

Таблица 1. Узлы

x y b z
         
i
N        

 

Поле (bound) используется, чтобы отличить внутренние узлы () от граничных (). Признак позволяет в программе, использующей эту сетку, задавать нужное граничное условие; например, если , ‑ то это условие Дирихле, если , ‑ то ставится условие Неймана, и т.д. на разных участках границы . Поле (zone) используется, чтобы задавать различные функции для коэффициентов решаемой задачи; например коэффициент теплопроводности в композитных материалах: ‑ сталь, ‑ аллюминий и т.д.

Таблица 1 не позволяет нарисовать МКЭ-сетку, а только узлы. Это значит, что требуется еще одна таблица элементов, или таблица связности, в которой указывались бы связи узлов ребрами и то, какие узлы образуют элемент.

Таблица 2. Элементы

n1 n2 n3 nm z
             
j            
M            

 

Строка таблицы элементов показывает, что конечный элемент ‑ это треугольник с вершинами в узлах 213, 45 и 41246 и расположенный в зоне 3. Таким образом, эта таблица указывает соответствие локальных и глобальных номеров узлов. При этом локальный порядок нумерации определен заранее, например как показано на рис. 3.1. Принято, чтобы «основные» узлы элемента, т.е. узлы, совпадающие с вершинами многоугольника, нумеровались против хода часовой стрелки.

С томощью двух таблиц – узлов и элементов – легко нарисовать МКЭ-сетку. Для этого в цикле рисуем каждый элемент. Конечный элемент рисуется так: в строке таблицы 2 последовательно берутся глобальные номера , для каждого из них в строках таблицы 1 берутся координаты и узлы соединяются ребрами в порядке . Таким образом, таблицы узлов и элементов однозначно определяют МКЭ-сетку. На практике наряду с этими таблицами удобно пользоваться таблицами инцидентности (или таблицами соседей). Так, для фрагмента сетки, показанной на рис. 3.2 таблицы 3, 4 инцидентых узлов и элементов выглядят так (заполнены только 1-я и 19-я строки)

Рис. 3.2. Фрагмент МКЭ-сетки

Таблица 3. Инцидентные узлы

e1 e2 e3 e4 e5 e6 ep
                 
                 
N                

 

Таблица 4. Инцидентные элементы

k1 k2 k3 k4 k5 k6 kz
                 
                 
N                

 

 





Поделиться с друзьями:


Дата добавления: 2017-03-12; Мы поможем в написании ваших работ!; просмотров: 494 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2431 - | 2320 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.