1. Определение изменчивости. Классификация ее форм.
Изменчивость – есть общее свойство живых организмов, заключающееся в изменении наследственных признаков в ходе онтогенеза (индивидуального развития).
Изменчивость организмов делят на два крупных типа:
1. фенотипическую, не затрагивающую генотип и не передающуюся по наследству;
2. генотипическую, изменяющую генотип и поэтому передающуюся по наследству.
Генотипическая изменчивость подразделяется на комбинативную и мутационную.
Мутационная изменчивость включает геномные, хромосомные и генные мутации.
Геномные мутации подразделяется на полиплоидию и анеуплоидию
Хромосомные мутации подразделяется на делеции, дупликации, инверсии, транслокации
2. Фенотипическая изменчивость. Норма реакции генетически детерминированных признаков. Адаптивный характер модификаций. Фенокопии.
Фенотипическая изменчивость (или ненаследственная, модификационная) – это изменение фенотипических признаков организма под действием факторов внешней среды, без изменения генотипа.
Например: окраска шерсти у гималайского кролика в зависимости от температуры среды обитания: на выбритом месте при температуре выше + 2С0, вырастает белая шерсть; при температуре ниже + 2С0 вырастает чёрная шерсть.
Норма реакции – это диапазон изменчивости, в пределах которого один и тот же генотип способен давать различные фенотипы.
1. широкая норма реакции – когда колебания признака идут в широких пределах (например: загар, количество молока).
2. узкая норма реакции – когда колебания признака незначительны (например: жирность молока).
3. однозначная норма реакции – когда признак не изменяется, ни при каких условиях (например: группы крови, цвет глаз, разрез глаз).
Адаптивный характер модификаций заключается в том, что модификационная изменчивость позволяет организму приспособиться к изменяющимся условиям среды. Поэтому модификации всегда полезны.
Если во время эмбриогенеза на организм воздействуют неблагоприятные факторы, то могут появляться фенотипические изменения, выходящие за пределы нормы реакции и не носящие адаптивного характера; их называют морфозы развития. Например, ребёнок рождается без конечностей или с заячьей губой.
Фенокопии – это морфозы развития, которые очень трудно отличить от наследственных изменений (заболеваний).
Например: если беременная женщина переболела краснухой, у неё может родиться ребёнок с катарактой. Но эта патология может появиться и в результате мутации. В первом случае речь идет о фенокопии.
Диагноз «фенокопия» важен для будущего прогноза, так как при фенокопии генетический материал не изменяется. Следовательно, у ребёнка с катарактой, рождённого больной краснухой женщиной, свои дети не будут больны катарактой.
3. Комбинативная изменчивость. Значение комбинативной изменчивости в обеспечении генетического разнообразия людей.
Комбинативная изменчивость – это возникновение у потомков новых комбинаций генов, которых не было у их родителей.
Комбинативная изменчивость связана:
с кроссинговером в профазу мейоза 1.
с независимым расхождением гомологичных хромосом в анафазу мейоза 1.
со случайным сочетанием гамет при оплодотворении.
Значение комбинативной изменчивости – обеспечивает генетическое разнообразие особей в пределах вида, что важно для естественного отбора и эволюции.
4. Мутационная изменчивость. Основные положения теории мутаций.
Гюго де Фриз голландский ученый ввел в 1901 году термин "мутация".
Мутация – это явление прерывистого скачкообразного изменения наследственного признака.
Процесс возникновения мутаций называется мутагенез, а организм, который приобретает новые признаки в процессе мутагенеза, называется – мутант.
Основные положения теории мутаций по Гюго де Фризу.
1. мутации возникают внезапно без всяких переходов.
2. возникшие формы вполне устойчивы.
3. мутации являются качественными изменениями.
4. мутации происходят в различных направлениях: они могут быть полезными, вредными и нейтральными.
5. одни и те же мутации могут возникать повторно.
5. Классификация мутаций.
I. По происхождению.
1. Спонтанные мутации. Самопроизвольные мутации или естественные, возникают в обычных природных условиях.
2. Индуцированные (наведённые) мутации. Они возникают при воздействии на организм мутагенных факторов.
а. физические (ионизирующее излучение, УФЛ, высокая температура и т.п.)
б. химические (соли тяжёлых металлов, азотистая кислота, свободные радикалы, бытовые и промышленные отходы, лекарства).
в. биологические (вирусы, продукты жизнедеятельности паразитов).
II. По месту возникновения.
а. Соматические мутации возникают в соматических клетках и наследуются потомками тех клеток, в которых возникли. Из поколения в поколение не передаются.
б. Генеративные мутации возникают в половых клетках и передаются из поколения в поколение.
III. По характеру изменений фенотипа.
1. Морфологические мутации, характеризующиеся изменением строения органа или организма в целом (заячья губа, волчья пасть, шестипалость).
2. Физиологические мутации, характеризующиеся изменением функций органа или организма в целом (при отсутствии тех или иных ферментов возникают болезни обмена веществ).
3. Биохимические мутации, связанные с изменением структуры белка.
IV. По влиянию на жизнеспособность организма.
1. Летальные – организм погибает на эмбриональной стадии (смертность 100%)
2. Полулетальные – организм погибает до размножения (смертность 50-90%)
3. Условно летальные мутации, в одних условиях организм погибает, а в других условиях выживает (галактоземия).
4. Полезные мутации повышают жизнеспособность организма (используются в селекции).
V. По характеру изменения наследственного материала.
1. Генные мутации.
2. Хромосомные мутации.
6. Генные мутации, определение. Механизмы возникновения спонтанных генных мутаций.
Генные мутации или точковые мутации – это мутации, которые возникают в генах на уровне нуклеотидов, при этом изменяется структура гена, изменяется молекула мРНК, изменяется последовательность аминокислот в белке, в организме изменяется признак.
Виды генных мутаций:
- миссенс мутации – замена 1 нуклеотида в триплете на другой приведет к тому, что в полипептидную цепь белка будет включаться другая аминокислота, которой в норме не должно быть, а это приведет к тому, что изменятся свойства и функции белка.
Пример: замена глутаминовой кислоты на валин в молекуле гемоглобина.
ЦТТ – глутаминовая кислота, ЦАТ – валин
Если такая мутация происходит в гене, который кодирует β цепь белка гемоглобина, то в β цепь вместо глютаминовой кислоты включается валин → в результате такой мутации изменяются свойства и функции белка гемоглобина и вместо нормального HbA появляется HbS, в результате у человека развивается серповидноклеточная анемия (форма эритроцитов изменяется).
- нонсенс мутации – замена 1 нуклеотида в триплете на другой приведет к тому, что генетически значащий триплет превратится в стоп кодон, что приводит к обрыву синтеза полипептидной цепи белка. Пример: УАЦ – тирозин. УАА – стоп кодон.
- мутации со сдвигом рамки считывания наследственной информации.
Если в результате генной мутации у организма будет появляться новый признак (например, полидактилия), то они называются неоморфные.
если в результате генной мутации организм утрачивает признак (например, при ФКУ исчезает фермент) то они называются аморфные.
- сеймсенс мутации – замена нуклеотида в триплете приводит к появлению триплета-синонима, который кодирует ту же самую аминокислоту. Это связано с вырожденностью генетического кода. Например: ЦТТ – глютамин ЦТЦ – глютамин.
Механизмы возникновения генных мутаций (замена, вставка, выпадение).
ДНК состоит из 2-х полинуклеотидных цепей. Сначала изменение возникает в 1-й цепи ДНК – это полумутационное состояние или “первичное повреждение ДНК”. Каждую секунду в клетке имеет место 1 первичное повреждение ДНК.
Когда повреждение переходит на вторую цепь ДНК то, говорят о том, что произошла фиксация мутации, то есть возникла “полная мутация”.
Первичные повреждения ДНК возникают при нарушении механизмов репликации, транскрипции, кроссинговера
7. Частота генных мутаций. Мутации прямые и обратные, доминантные и рецессивные.
У человека частота мутаций = 1х10–4 – 1х10–7, то есть в среднем 20–30% гамет у человека в каждом поколении являются мутантными.
У дрозофилы частота мутаций = 1х10–5, то есть 1 гамета из 100 тысяч несет генную мутацию.
а. Прямая мутация (рецессивная) – это мутация гена из доминантного состояния в рецессивное состояние: А → а.
б. Обратная мутация (доминантная) – это мутация гена из рецессивного состояния в доминантное состояние: а → А.
Генные мутации встречаются у всех организмов, гены мутируют в различных направлениях, а также с различной частотой. Гены, которые редко мутируют называются – стабильные, а гены, которые часто мутируют называются – мутабельные.
8. Закон гомологических рядов в наследственной изменчивости Н.И.Вавилова.
Мутирование происходит в самых различных направлениях, т.е. случайно. Однако эти случайности подчиняются закономерности, обнаруженной в 1920г. Вавиловым. Он сформулировал закон гомологичных рядов в наследственной изменчивости.
"Виды и роды генетически близкие характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть существование параллельных форм у других видов и родов".
Этот закон позволяет предсказать наличие определённого признака у особей различных родов одного семейства. Так было предсказано наличие в природе безалкалоидного люпина, т.к. в семействе бобовых есть роды бобов, гороха, фасоли, не содержащие алкалоиды.
В медицине закон Вавилова позволяет использовать животных, генетически близких человеку, в качестве генетических моделей. На них ставят эксперименты по изучению генетических болезней. Например, катаракта изучается на мышах и собаках; гемофилия – на собаках, врождённая глухота – на мышах, морских свинках, собаках.
Закон Вавилова позволяет предвидеть появление индуцированных мутаций, неизвестных науке, которые могут использоваться в селекции для создания ценных для человека форм растений.
9. Антимутационные барьеры организма.
- Точность репликации ДНК. Иногда в ходе репликации возникают ошибки, тогда включаются механизмы самокоррекции, которые направлены на устранение неправильного нуклеотида. Важную роль играет фермент ДНК-полимераза, и частота ошибок снижается в 10 раз (с 10–5до 10–6).
- Вырожденность генетического кода. 1 аминокислоту могут кодировать несколько триплетов, поэтому замена 1 нуклеотида в триплете в ряде случаев не искажает наследственную информацию. Например, ЦТТ и ЦТЦ – глутаминовая кислота.
- Экстракопирование некоторых генов отвечающих за важные макромолекулы: рРНК, тРНК, белки гистоны, т.е. образуется много копий этих генов. Эти гены входят в состав умеренно повторяющихся последовательностей.
- Избыточность ДНК – 99% является избыточной и мутагенный фактор чаще попадает в эти 99% бессмысленных последовательностей.
- Парность хромосом в диплоидном наборе. В гетерозиготном состоянии многие вредные мутации не проявляются.
- Выбраковка мутантных половых клеток.
- Репарация ДНК.
10. Репарация генетического материала..
Репарация ДНК – удаление первичных повреждений из ДНК и замена их нормальными структурами.
Выделяют две формы репарации: световую и темновую
А. Световая репарация (или ферментативная фотореактивация). Ферменты репарации активны только в присутствии света. Эта форма репарации направлена на удаление первичных повреждений ДНК вызванных действием УФЛ.
Под действием УФЛ в ДНК активируются пиримидиновые азотистые основания, что приводит к тому, что возникают связи между пиримидиновыми азотистыми основаниями, которые располагаются рядом в одной цепи ДНК, то есть образуются пиримидиновыедимеры. Чаще всего возникают связи: Т=Т; Т=Ц; Ц=Ц.
В норме в ДНК пиримидиновых димеров нет. Образование их приводит к тому, что искажается наследственная информация и нарушается нормальный ход репликации и транскрипции, что приводит впоследствии к генным мутациям.
Суть фотореактивации: в ядре существуют специальный (фотореактивирующий) фермент, который активен только в присутствии света, этот фермент разрушает пиримидиновые димеры, то есть разрывает связи, которые возникли между пиримидиновыми азотистыми основаниями под действием УФЛ.
Темновая репарация происходит в темноте и на свету, то есть активность ферментов не зависит от присутствия света. Она делится на дорепликативная репарацию и пострепликативную репарацию.
Дорепликативная репарация происходит до репликации ДНК, в этом процессе участвует много ферментов:
o Эндонуклеаза
o Экзонуклеаза
o ДНК- полимераза
o ДНК - лигаза
Допустим, в ДНК имеется первичное повреждение.
1 этап. Фермент эндонуклеаза находит поврежденный участок и разрезает его.
2 этап. Фермент экзонуклеаза удаляет поврежденный участок из ДНК (эксцизия) в результате образуется брешь.
3 этап. Фермент ДНК полимераза синтезирует недостающий участок. Синтез происходит по принципу комплементарности.
4 этап. Ферменты лигазы соединяют или сшивают вновь синтезированный участок с цепью ДНК. Таким образом, первичное повреждение в ДНК устраняется.
Пострепликативная репарация.
Допустим, в ДНК имеется первичное повреждение.
1 этап. Начинается процесс репликации ДНК. Фермент ДНК-полимераза синтезирует новую цепь полностью комплементарную старой неповрежденной цепи.
2 этап. Фермент ДНК полимераза синтезирует другую новую цепь, но участок, где находится повреждение, он обходит. В результате во второй новой цепи ДНК образовалась брешь.
3 этап. По окончании репликации фермент ДНК полимераза синтезирует недостающий участок комплементарно новой цепи ДНК.
4 этап. Затем фермент лигаза соединяют вновь синтезированный участок с цепью ДНК, где имелась брешь. Таким образом, первичное повреждение ДНК не перешло на другую новую цепь, то есть не произошла фиксация мутации.
В дальнейшем первичное повреждение ДНК может быть ликвидировано в ходе дорепликативной репарации.
11. Мутации, связанные с нарушением репарации ДНК и их роль в патологии.
Способность к репарации у организмов выработалась и закрепилась в ходе эволюции. Чем выше активность репарирующих ферментов, тем стабильнее наследственный материал. За ферменты репарации отвечают соответствующие гены, поэтому если происходит мутация в этих генах, то снижается активность репарирующих ферментов. У человека при этом возникают тяжелые наследственные заболевания, которые связаны со снижением активности репарирующих ферментов.
Таких заболеваний у человека больше 100. Некоторые из них:
Анемия Фанкони – уменьшение количества эритроцитов, потеря слуха, нарушения в ССС, деформация пальцев, микроцефалия.
Сидром Блума – малый вес новорождённого, замедление роста, повышенная восприимчивость в вирусной инфекции, повышенный риск онкологических заболеваний. Характерный признак: при непродолжительном пребывании на солнечном свету на коже лица появляется пигментация в форме бабочки (расширение кровеносных капилляров).
Пигментная ксеродермия – на коже от света появляются ожоги, которые скоро перерождаются в рак кожи (у таких больных рак возникает в 20.000 раз чаще). Больные вынуждены жить при искусственном освещении.
Частота заболевания – 1: 250.000 (Европа, США), и 1: 40.000 (Япония)
Два вида прогерий – преждевременное старение организма.
12. Генные болезни, механизмы их развития, наследования, частота возникновения.
Генные болезни (или молекулярные болезни) достаточно широко представлены у человека, их насчитывается более 1000.
Особую группу среди них составляют врожденные дефекты обмена веществ. Впервые эти заболевания описал А. Гарод в 1902 году. Симптоматика этих заболеваний различна, но всегда имеет место нарушение превращения веществ в организме. При этом одни вещества будут в избытке, другие в недостатке. Например, в организм поступает вещество (А) и превращается далее под действием ферментов в вещество (В). Далее вещество (В) должно превращаться в вещество (С), но этому мешает мутационный блок
(), в результате вещество (С) будет в недостатке, а вещество (В) в избытке.
А → В С
Примеры некоторых болезней, обусловленных врожденным дефектом обмена веществ.
ФКУ (фенилкетонурия, врожденное слабоумие). Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 1:10.000. Фенилаланин является незаменимой аминокислотой для построения белковой молекулы и, кроме того, служит предшественником гормонов щитовидной железы (тироксина), адреналина и меланина. Аминокислота фенилаланин в клетках печени должна превращаться с помощью фермента (фенилаланин-4-гидроксилазы) в тирозин. Если отсутствует фермент, отвечающий за данное превращение, или снижена его активность то содержание фенилаланина в крови будет резко повышено, а содержание тирозина понижено. Избыток фенилаланина в крови приводит к появлению его производных (фенилуксусной, фенилмолочной, фенилпировиноградной и других кетоновых кислот), которые выделяются с мочой, а также оказывают токсическое воздействие на клетки центральной нервной системы, что приводит к слабоумию.
При своевременной постановке диагноза и переводе младенца на диету, лишенную фенилаланина, развитие заболевания можно предупредить.
Альбинизм общий. Генное заболевание, наследуется по аутосомно-рецессивному типу. В норме аминокислота тирозин участвует в синтезе тканевых пигментов. Если возникает мутационный блок, отсутствует фермент или снижена его активность, то тканевые пигменты не синтезируются. В этих случаях кожа имеет молочно-белый цвет, волосы очень светлые, вследствие отсутствия пигмента в сетчатке просвечивают кровеносные сосуды, глаза имеют красновато-розовый цвет, и повышенную чувствительность к свету.
Алькапнонурия. Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 3-5:1.000.000. Заболевание связано с нарушением превращения гомогентизиновой кислоты, в результате чего эта кислота накапливается в организме. Выделяясь с мочой, эта кислота приводит к развитию заболеваний почек, кроме того, подщелоченная моча при этой аномалии быстро темнеет. Также заболевание проявляется окрашиванием хрящевых тканей, в пожилом возрасте развивается артрит. Таким образом, заболевание сопровождается поражением почек и суставов.
Генные болезни, связанные с нарушением обмена углеводов.
Галактоземия. Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 1:35.000-40.000 детей.
В крови новорождённого содержится моносахарид галактоза, который образуется при расщеплении дисахарида молока лактозы на глюкозу и галактозу. Галактоза непосредственно не усваивается организмом, она должна быть переведена специальным ферментом в усваиваемую форму – глюкоза-1-фосфат.
Наследственная болезнь галактоземия обусловлена нарушением функции гена, контролирующего синтез белка-фермента, превращающего галактозу в усваиваемую форму. В крови больных детей будет очень мало этого фермента и много галактозы, что устанавливается биохимическим анализом.
Если диагноз поставлен в первые дни после рождения ребенка, то его кормят смесями, где нет молочного сахара, и ребёнок нормально развивается. В противном случае ребёнок вырастает слабоумным.
Муковисцидоз. Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 1:2.000-2.500. Заболевание связано с мутацией гена, который отвечает за белок-переносчик, встроенный в плазматическую мембрану клеток. Этот белок регулирует проницаемость мембраны к ионам Na и Ca. Если нарушена проницаемость этих ионов в клетках экзокринных желез, то железы начинают вырабатывать густой, вязкий секрет, который закрывает протоки экзокринных желез.
Выделяют легочную и кишечную формы муковисцидоза.
Синдром Марфана. Генное заболевание, наследуется по аутосомно-доминантному типу. Связано с нарушением обмена белка фибриллина в соединительной ткани, что проявляется комплексом признаков: «паучьи» пальцы (арахнодактилия), высокий рост, подвывих хрусталика, пороки сердца и сосудов, повышенный выброс в кровь адреналина, сутулость, впалая грудь, высокий свод стопы, слабость связок и сухожилий и т.д. Впервые описано в 1896 году французским педиатром Антонио Марфаном.
ЛЕКЦИЯ 10 Структурные мутации хромосом.
1. Структурные мутации хромосом (хромосомные аберрации).
Выделяют следующие виды хромосомных аберраций.
– делеции
– дупликации
– инверсии
– кольцевые хромосомы
– транслокации
– транспозиции
При данных мутациях изменяется структура хромосом, изменяется порядок расположения генов в хромосомах, изменяется доза генов в генотипе. Эти мутации встречаются у всех организмов, они классифицируются следующим образом.
По происхождению:
- спонтанные – они возникают в нормальных условиях обитания, и их причина пока не ясна
- индуцированные – природа фактора, вызвавшего мутацию известна
По месту возникновения:
- соматические – затрагивают наследственный материал соматических клеток, не передаются при половом размножении и наследуются только при бесполом размножении
- генеративные – затрагивают наследственный материала гамет, обязательно передаются потомкам
По влиянию на жизнеспособность организма:
- полезные (крайне редко)
- вредные (очень часто)
Мутации могу быть сбалансированными и несбалансированными:
- сбалансированные – система генотипа не изменяется, значит, не меняется и фенотип
- несбалансированные – изменяется система генотипа, значит, изменяется и фенотип
Если мутация затрагивает две хромосомы, говорят о межхромосомных перестройках.
Если мутация затрагивает 1 хромосому, говорят о внутрихромосомных перестройках.
2. Механизмы возникновения структурных мутаций хромосом.
- гипотеза «разрыв-соединение». Предполагают, что в одной или нескольких хромосомах происходят разрывы. Образуются участки хромосом, которые затем соединяются, но в иной последовательности. Если разрыв происходит до репликации ДНК, то в этот процесс вовлекаются две хроматиды – это изохроматидный разрыв. Если разрыв происходит после репликации ДНК, то в процесс вовлекается одна хроматида – это хроматидный разрыв.
- вторая гипотеза: между негомологичными хромосомами происходит процесс подобный кроссинговеру, т.е. негомологичные хромосомы обмениваются участками.
3. Делеции, их сущность, формы, фенотипический эффект. Псевдодоминирование.
Делеция (нехватка) – потеря участка хромосомы.
в хромосоме может произойти один разрыв, и она потеряет концевой участок, который будет разрушен ферментами (дефишенси)
в хромосоме может быть два разрыва с потерей центрального участка, который также будет разрушен ферментами (интерстициальная делеция).
В гомозиготном состоянии делеции всегда летальны, в гетерозиготном состоянии они проявляются множественными пороками развития.
Выявление делеций:
- дифференциальное окрашивание хромосом
- по фигуре петли, которая образуется во время коньюгации гомологичных хромосом в профазу мейоза 1. Петля возникает на нормальной хромосоме.
Впервые делеция была изучена у мушки дрозофилы, при этом произошла потеря участка Х хромосомы. В гомозиготном состоянии эта мутация летальна, а в гетерозиготном состоянии она проявляется фенотипически вырезкой на крыле (Notch-мутация). При анализе этой мутации было выявлено особое явление, которое получило название псевдодоминирование. При этом фенотипически проявляется рецессивный аллель, так как участок хромосомы с доминантным аллелем утрачен вследствие делеции.
У человека делеции чаще происходят в хромосомах с 1 по 18. Например, делеция короткого плеча пятой хромосомы в гетерозиготном состоянии проявляется фенотипически, как синдром "кошачьего крика". Ребёнок рождается с большим числом патологий, живет от 5 дней до месяца (очень редко до 10 лет), его плач напоминает резкое мяуканье кота.
В 21 или 22 хромосоме стволовых кроветворных клеток может произойти интерстициальная делеция. В гетерозиготном состоянии она проявляется фенотипически как злокачественная анемия.
4. Дупликации, инверсии, кольцевые хромосомы. Механизм возникновения. Фенотипическое проявление.
Дупликация – удвоение какого-то участка хромосомы (этот участок может повторяться многократно). Дупликации могут быть прямыми и обратными.
При данных мутациях увеличивается доза генов в генотипе, и в гомозиготном состоянии эти мутации летальны. В гетерозиготном состоянии они проявляются множественными пороками развития. Однако эти мутации могли играть определенную роль в эволюции, благодаря ним могли возникнуть семейства генов гемоглобина. Также дупликации могли обеспечить возникновение многократно повторяющихся последовательностей нуклеотидов.
Выявление дупликаций:
1) дифференциальное окрашивание.
2) фигура петли в профазу мейоза 1. Петля возникает на мутировавшей хромосоме.
Инверсия – отрыв участка хромосомы, поворот его на 180° и присоединение на старое место. При инверсиях доза генов не меняется, но изменяется порядок расположения генов в хромосоме, т.е. изменяется группа сцепления. Концевых инверсий не бывает.
Инверсии бывают 2 видов:
парацентрическая инверсия, которая не затрагивает центромеру, т.к. разрывы происходят в пределах одного плеча хромосомы
перицентрическая инверсия, которая затрагивает центромеру, т.к. разрывы происходят по обе стороны от центромеры.
При перицентрической инверсии может изменяться форма хромосомы (если концы поворачиваемых участков не симметричны). А это делает невозможным в последующем конъюгацию. Выявление инверсий:
1) дифференциальное окрашивание.
2) фигура в виде двух противоположно расположенных петель в профазу мейоза 1.
Фенотипическое проявление инверсий наиболее мягкое по сравнению с другими хромосомными абберациями. Если рецессивные гомозиготы погибают, то у гетерозигот чаще всего наблюдается бесплодие.
Кольцевые хромосомы. В норме в кариотипе человека кольцевых хромосом нет. Они могут появляться при действии на организм мутагенных факторов, особенно радиоактивного облучения.
При этом в хромосоме происходит два разрыва, и образовавшийся участок замыкается в кольцо. Если кольцевая хромосома содержит центромеру, то образуется – центрическое кольцо. Если центромеры нет, то образуется – ацентрическое кольцо, оно разрушается ферментами и не наследуется.
В гомозиготном состоянии эти мутации летальны, а в гетерозиготном состоянии фенотипически проявляются, как делеции.
Выявляются кольцевые хромосомы при исследовании кариотипа человека. Кольцевые хромосомы являются маркерами радиоактивного облучения. Чем больше доза радиоактивного облучения, тем больше кольцевых хромосом, и тем хуже прогноз.
5. Транслокации, их сущность. Реципрокные транслокации, их характеристика и медицинское значение. Робертсоновские транслокации и их роль в наследственной патологии.
Транслокация – это перемещение участка хромосомы. Бывают взаимные (реципрокные) и не взаимные (транспозиции) транслокации.
Реципрокные транслокации происходят в тех случаях, когда две негомологичные хромосомы обмениваются своими участками.
Особую группу транслокаций составляют робертсоновские транслокации (центрические слияния). Им подвергаются акроцентрические хромосомы – они теряют короткие плечи, а их длинные плечи соединяются.
Причина 4-5% случаев рождения ребёнка-дауника – робертсоновские транслокации. При этом происходит перемещение длинного плеча 21 хромосомы на одну из хромосом группы D (13, 14, 15, чаще вовлекается 14 хромосома).
Типы яйцеклеток сперматозоид зигота Последствия
14 + 14, 21 14,14,21 моносомия 21 (леталь)
14/21,21 + 14, 21 14/21,21,14,21 трисомия 21 (дауник)
21 + 14, 21 21,14,21, моносомия 14 (леталь)
14,14/21 + 14, 21 14,14/21,14,21 трисомия 14 (леталь)
14/21 + 14, 21 14/21,14,21 фенотипически здоров (носитель)
14, 21 + 14, 21 14,21,14,21 фенотипически здоров
Как видим, женщина с робертсоновской транслокацией, в кариотипе которой 45 хромосом может родить здорового ребенка.
Выявление транслокаций:
1) дифференциальное окрашивание
2) фигура креста в профазу мейоза 1.
6. Траспозиции. Мобильные генетические элементы. Механизмы перемещения МГЭ по геному и их значение.
Если транслокации не носят характера взаимности, то говорят о транспозиции.
Особую группу транспозонов составляют мобильные генетические элементы (МГЭ), или прыгающие гены, которые обнаружены у всех организмов. У мушки дрозофилы они составляют 5% генома. У человека МГЭ объединяют в семейство ALU.
МГЭ состоят из 300- 400 нуклеотидов, повторяющихся в геноме у человека 300 тысяч раз.
На концах МГЭ находятся повторы нуклеотидов, состоящие из 50-100 нуклеотидов. Повторы могут быть прямыми и обратными. Повторы нуклеотидов, по-видимому, влияют на перемещение МГЭ.
Выделяют два варианта перемещения МГЭ по геному.
1. с помощью процесса обратной транскрипции. Для этого необходим фермент обратная транскриптаза (ревертаза). Этот вариант протекает в несколько этапов:
на ДНК фермент РНК-полимераза (другое название – транскриптаза) синтезирует мРНК,
на мРНК фермент обратная транскриптаза синтезирует одну цепь ДНК,
фермент ДНК-полимераза обеспечивает синтез второй цепочки ДНК,
синтезированный фрагмент замыкается в кольцо,
кольцо ДНК встраивается в другую хромосому или в другое место этой же хромосомы.
2. с помощью фермента транспозазы, который вырезает МГЭ и переносит его в другую хромосому или в другое место этой же хромосомы
В ходе эволюции МГЭ играли положительную роль, т.к. они осуществляли перенос генетической информации от одних видов организмов к другим. Важную роль в этом играли ретровирусы, которые содержат в качестве наследственного материала РНК, а также содержат обратную транскриптазу.
МГЭ перемещаются по геному очень редко, одно перемещение на сотни тысяч событий в клетке (частота перемещений 1 х 10–5).
В каждом конкретном организме МГЭ положительной роли не играют, т.к. перемещаясь по геному, они изменяют работу генов, вызывают генные и хромосомные мутации.
7. Индуцированный мутагенез. Физические, химические и биологические мутагенные факторы.
Индуцированные мутации возникают при действии на организм мутагенных факторов, которые делятся на 3 группы:
- Физические (УФЛ, рентгеновское и радиационное излучения, электромагнитные поля, высокие температуры).
Так ионизирующее излучение может действовать непосредственно на молекулы ДНК и РНК, вызывая в них повреждения (генные мутации). Косвенное воздействие этого мутагена на геном клеток заключается в образовании Н2О2, ОН-, О2-, а они уже повреждают ДНК.
- Химические мутагенные факторы. Существует свыше 2 млн. химических веществ, способных вызывать мутации. Это соли тяжелых металлов, химические аналоги азотистых оснований (5-бромурацил), алкилирующие соединения (СН3, С2 Н5).
- Биологические (вирусы, продукты жизнедеятельности паразитов, МГЭ).
8. Радиационные мутации. Генетическая опасность загрязнения окружающей среды.
Радиационные мутации это мутации, вызванные радиацией. В 1927 году американский генетик, Генрих Мелёр впервые показал, что облучение рентгеновскими лучами приводит к существенному увеличению частоты мутаций у дрозофилы. Эта работа положила начало новому направлению в биологии – радиационной генетике. Благодаря многочисленным работам, проведенным за последние десятилетия, мы теперь знаем, что при попадании элементарные частицы (кванты, электроны, протоны и нейтроны) могут вызывать ионизация молекул воды с образованием свободных радикалов (ОН-, О2-). Обладая большой химической активностью свободные радикалы вызывают разрывы ДНК, повреждение нуклеотидов или их разрушение; всё это приводит к возникновению мутаций.
Так как человек является открытой системой, то различные факторы загрязнения окружающей среды могут попадать в человеческий организм. Многие из этих факторов могут изменять или повреждать наследственный материал живых клеток. Последствия воздействия этих факторов столь серьезны, что человечество не может игнорировать загрязнение окружающей среды.
9. Мутагенез и канцерогенез.
Впервые мутационную теорию рака в 1901 году предложил Гюго Де Фриз. В наши дни существует много теорий канцерогенеза.
Одна из них генная теория канцерогенеза. Известно, что в геноме человека содержится более 60 онкогенов, способных регулировать клеточное деление. Они находятся в неактивном состоянии в виде протоонкогенов. Под действием различных мутагенных факторов протоонкогены активируются и переходят в состояние онкогенов, которые вызывают интенсивную пролиферацию клеток и развитие опухолей.
ЛЕКЦИЯ 11 Мутации числа хромосом.