Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Цепь с активным сопротивлением




В электрической цепи (рис. 4.9) действию переменного напряжения и и создаваемого им тока оказывает противодействие падение напряжения iR на активном сопротивлении, т. е. в любой момент времени и = iR.

В соответствии с положением (2) активное сопротивление численно равно падению напряжения, создаваемому током один ампер и оказывающему про­тиводействие этому току. Падение напряжения, создаваемое мгновенным значением тока i, равно

u = iR, амплитудным значением тока I m, Um = ImR, действующим значением тока I, U = IR. Отсюда

i = u/R; Im = Um/R; I=U/R.

Эти формулы отражают закон Ома для мгновенных, амплитудных и действующих значений тока и напряжения.

Примем фазу тока аi = ωt, i = Im sinωt (рис. 4.10).

 

 

Тогда u = iR = ImR sin ωt = Um sin ωt, т. е. фаза напряжения равна фазе тока: аи = ωt = ai. На активном сопро­тивлении ток и напряжение совпадают по фазе (1).

 

 

ЦЕПЬ С ЕМКОСТЬЮ

В электрической цепи (рис. 4.14) действию переменного напряжения и оказывает противодействие падение напряжения на конденсаторе ис, создаваемое током. При этом мгновенное значение тока i, изменяющее заряд конденсатора q, такое, что создаваемое этим зарядом напряжение конденсатора в любой момент времени уравновешивает действие напряжения цепи, т. е. ис=и.

В моменты времени, когда конденсатор полностью заря­жен, ис = ит, i = 0 (ток перестал заряжать конденсатор, в следующий момент времени конденсатор будет разряжаться). Значит, синусоидальный ток и напряжение сдвинуты по фазе на 90°. Фактором, сдвигающим по фазе ток, является напряжение электрического поля за­рядов конденсатора.

Изменение напряжения на обкладках конденсатора происходит за счет изменения тока. Ток — причина возникновения напряжения конденсатора, напряжение — следствие. Поэтому на емкости ток опережает напряжение по фазе на угол 90° (1) (рис. 4.15).


Примем и = Umsinωt. Используя формулы (2.1) и (1.6), получаем

i = dq/dt = Cdu/dt = Cd(Um sin ωt)/dt = ωCUm cos ωt =Im sin (ωt + 90° ), что подтверждает положение (1) и дает выражение Im = UmωC. Разделив его на √2, имеем I = UωС, откуда I = U/XC, где

Xс = 1/(ωС).

I=U/XC; (4.5)

Хс = 1/(ωС)= 1 /(2πfС); Хс = U/I. (4.6)

Формула (4.5) отражает закон Ома для участка цепи с емкостью, а (4.6) позволяет рассчитать емкостное сопротивление.

В формуле (4.5) значение Хс относится к действующим значениям тока и напряжения. Для мгновенных значений тока эту формулу применить нельзя, так как, например, в моменты времени, когда конденсатор разряжен, q = 0, и = 0, i = Im (рис. 4.15), а по формуле получилось бы i = и/Хс = 0/Хс = 0, что непра­вильно.

В цепи с емкостью мгновенное значение мощности р = ui непрерывно изменяется по графику pit) (рис. 4.16).

При зарядке конденсатор потребляет энергию, при разрядке отдает ее назад в цепь, поэтому среднее значение мощности за период (т. е. активная мощность) равно нулю. Для количественной характеристики интен­сивности обмена энергией между источником и конден­сатором введено понятие реактивной мощности Qc, которая равна максимальному значению мгновенной мощности

p= иi = Um sin ωt ·I m cos ωt = Um Im /2 · sin 2ωt = UI sin 2ωt = Qc sin 2ωt, т.е.

Qc =UI = I2 Xc

ЦЕПЬ С ИНДУКТИВНОСТЬЮ

В электрической цепи (рис. 4.17) действию перемен­ного напряжения и создаваемого им тока противодействует ЭДС самоиндукции eL = — Ldi/dt. При этом в любой момент времени ток имеет такое мгно­венное значение, при котором противодействие равно действию, т. е. и=е.

В моменты времени, когда ток достига­ет

амплитуды i = Im, скорость его измене­ния

di/dt = O (ток перестал увеличиваться,

в следующий момент времени он

начнет уменьшаться), поэтому eL=0tu= — £/,=0.

Значит, синусоидальные напряжения и ток

сдвинуты по фазе на 90°.

Фактором, сдвигающим ток по фазе, является

ЭДС самоиндукции.

Изменение тока катушки индуктивности происходит за счет изменения напряжения. Появление напряжения — причина возникновения тока катушки. Поэтому на индуктивности ток отстает от напряжения на угол 90° (1) (рис. 4.18).

Примем i = Im sin ωt. Тогда и = — eL = Ldi/dt = Ld (Im sin ωt) / dt = ωLIm cos ωt = Um sin (ωt +90°), что подтверждает положение (1) и дает выражение Um = ωLIm. Разделив его на √2, имеем U = ωLI,

от­куда

I=U/(ωL)=U/XL; (4.7)

XL =ωL=2 πfL; XL = U/I. (4.8)

Формула (4.7) отражает закон Ома для участка цепи с индуктивностью, а (4.8) позволяет рассчитать индуктивное сопротивление.

По аналогии с емкостным сопротивлением значение индуктивного сопротивления нельзя относить к мгновенным значениям тока и напряжения.

При i = Im di/dt = 0, поэтому eL = — Ldi/dt = 0.

Зна­чит, ЭДС самоиндукции отстает от тока по фазе на 90°(рис. 4.19). Учитывая, что напряжение опережает ток по фазе на угол 90°, делаем вывод, что в цепи с индуктивностью напряжение и ЭДС самоиндукции находятся в противофазе, т. е. ЭДС самоиндукции уравновешивает действие напряжения (2).


Мгновенное значение мощности р=иi в цепи с индуктивностью непрерывно изменяется.

Подобно конденсатору, индуктивность обменивается энергией с источником так, что средняя мощность за период (активная мощность) равна нулю, а реактивная индуктивная мощность QL, подобно реактивной емкостной мощности, равна амплитудному значению мгновенной мощности:

QL==UI = I2XL.





Поделиться с друзьями:


Дата добавления: 2017-02-28; Мы поможем в написании ваших работ!; просмотров: 3165 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2728 - | 2300 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.