Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема 1 Матрицы и определители




Математика: Методические рекомендации по выполнению домашней контрольной работы / Е.А.Сбродова - Челябинск: ЧОУ ВПО Южно-Уральский институт управления и экономики, 2014.- 21с.

 

 

Математика: Методические рекомендации по выполнению домашней контрольной работы: 080200.62 «Менеджмент»

 

 

Ó Издательство ЧОУ Южно-Уральский институт управления и экономики», 2014

СОДЕРЖАНИЕ

 

Введение……………………………………………………………………  
Методические рекомендации по выполнению контрольных заданий…  
Задания для домашней контрольной работы……………………………  
Рекомендуемый список литературы……………………………………..  

 

 

 

ВВЕДЕНИЕ

 

Цель курса математики в системе подготовки экономиста– освоение необходимого математического аппарата.

Это необходимо для анализа моделирования и решения прикладных экономических задач, в том числе с использованием ЭВМ.

Задачи изучения математики как фундаментальной дисциплины состоят в развитии логического и алгоритмического мышления, в выработке умения моделировать реальные экономические процессы.

 

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ ЗАДАНИЙ

 

РАЗДЕЛ 1 ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

 

Тема 1 Матрицы и определители

 

Определение матрицы. Виды матриц. Транспонирование матриц. Алгебраические операции над матрицами. Определители второго, третьего порядков и матрицы n-го порядка. Теорема Лапласа. Присоединенная и обратная матрицы. Алгоритм вычисления обратной матрицы. Ранг матрицы как наивысший порядок ее миноров, отличных от нуля. Вычисление ранга матрицы с помощью элементарных преобразований. Линейная комбинация, линейная зависимость и независимость строк (столбцов) матрицы. Теорема о ранге матрицы — максимальном числе ее линейно независимых строк (столбцов). (1, гл.1, § 1.1-1.6; с.9-35); (2, гл.1).

Надо хорошо уяснить, что матрица — это прямоугольная таблица,составленная из mn чисел, расположенных в m строках и n столбцах. Необходимо знать, как устанавливаются размеры матрицы и ее порядок, уметь выполнять транспонирование матриц, алгебраические операции над ними (умножение матрицы на число, сложение, вычитание, умножение матриц).

Необходимо усвоить следующее: строки обозначаются индексом ”i”, столбцы индексом ”j”. Поэтому любой элемент матрицы можно обозначить aij. Это означает, что элемент aij находится в i-ой строке и в j-ом столбце. Например, a11 – элемент первой строки и первого столбца; a23–элемент второй строки и третьего столбца. Индекс с «i» растет всегда «вниз», а индекс «j» – растет вправо.

Размер матрицы m х n означает, что конечные величины i и j равны соответственно m и n, т.е. iкон=m, jкон=n.

При вычислении определителей необходимо отметить, что определитель есть число и вычисляется по определенным правилам. Необходимо рассмотреть правило вычисления определителей второго порядка и правило треугольника или правило Сарруса для вычисления определителей третьего порядка.

В качестве универсального метода вычисления определителей необходимо рекомендовать вычисление на основе теоремы Лапласа.

Для этого нужно знать определение минора (вычисление), определение алгебраического дополнения Aij=(-1)i+jMij и саму теорему Лапласа. (1, пример 9, с. 25, с. 26).

Мало того, нужно обратить внимание и на то, что определители порядка больше трех вычисляются с помощью теоремы Лапласа.

Относительные трудности возникают при усвоении операции умножения матриц. Необходимо твердо усвоить формальное правило умножения (1, с. 12 – 13) и связанное с ним условие существования произведения АВ матриц А и В:число столбцов матрицы А должно быть равно числу строк матрицы В. Одна из особенностей операции умножения состоит в том, что произведение матриц в общем случае не коммутативно, т.е. АВ ¹ ВА. Даже если А и В – квадратные матрицы, в общем случае АВ ¹ ВА, в чем нетрудно убедиться на любом частном примере. Другая особенность произведения матриц состоит в том, что произведение двух ненулевых матриц может оказаться нулевой матрицей.

Например, можно легко показать, что произведение матриц есть нулевая матрица (сравните: во множестве действительных чисел произведение равно нулю тогда, когда хотя бы один из сомножителей равен нулю).

=

Нужно знать определение присоединенной и обратной матриц, уметь их вычислять, знать, что для существования матрицы А-1, обратной матрице А, необходимо и достаточно, чтобы матрица А была невырожденной (неособенной). Проверить правильность вычисления обратной матрицы можно, составив произведение АА-1 или А-1 А. Если оно является единичной матрицей Е, то, в соответствии с определением, матрица А -1 вычислена правильно.

Нужно уметь вычислять определители второго и третьего порядков (метод треугольника) и более высших порядков (1, пример 1.9, c.25, 26). При вычислении определителей нужно активно использовать свойства определителей 2,4,5,6,8. Теорему Лапласа нужно знать твердо и уметь ее использовать для практики.

Разобрать для усвоения материала по вычислению определителей задачи 1.19-1.21.

Вычисление обратной матрицы осуществлять по алгоритму, изложенному в (1). Нужно четко усвоить в алгоритме, что обратная к исходной матрице существует. После этого определяется транспонированная к исходной матрица. Именно для транспонированной матрицы А¢ ищутся алгебраические дополнения Aij.

Из алгебраических дополнений к транспонированной матрице составляется присоединенная (союзная) матрица.

Если известна союзная матрица и определитель исходной матрицы, то вычисляется обратная матрица

A-1= / .

Обратная матрица будет использоваться для решения систем линейных уравнений.

Для усвоения материала необходимо разобрать задачи (1, 1.15— 1.18, 1.22—1.29).

Пример: Найти матрицу С=В¢×А¢×А×В, если А= , В= .

Решение:

Алгоритм решения:

1. Находим матрицы В¢, А¢, транспонированные к матрицам А и В.

А¢= , В¢= .

2. Находим произведение матриц:

В¢×А¢= × = .

Это возможно ибо число столбцов матрицы В¢ равно числу строк матрицы А¢.

3. Находим произведение матриц:

А×В= = .

4. Находим произведение

С=В¢×А¢×А×В= = (10)

Ответ: C = (10)





Поделиться с друзьями:


Дата добавления: 2017-02-28; Мы поможем в написании ваших работ!; просмотров: 355 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2346 - | 2305 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.