Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Ингаляционное поступление радионуклидов




Поверхность альвеол в 50 раз больше поверхности кожи, поэтому ингаляционное поступление РВ в организм может вносить значительный вклад в общее поступление их в организм, особенно в первые дни после радиоактивного загрязнения местности газообразными и аэрозольными коротко живущими продуктами ядерного распада в виде пыли, тумана, дыма. Проникая
в легкие, растворимые радионуклиды быстро всасываются в кровь и разносятся по органам, тканям; труднорастворимые РВ оседают в альвеолах, проникают в межальвеолярное пространство и лимфоузлы, которые становятся критическими органами для этих радионуклидов.

4.1.3. Поступление радионуклидов через кожу,
слизистые оболочки и раны

Этот путь поступления радиоактивных веществ может иметь место при осаждении аэрозольных и твердых радиоактивных частиц на поверхности кожи, всасываемость через поверхность кожи может усиливаться при воздействии химических факторов (отравляющие вещества), других физических факторов высокой температуры и инфракрасных лучей (ожоги кожных покровов), биологических факторов (бактериальные токсины и воздействие самих микроорганизмов). Через кожу и слизистые оболочки обычно всасываются газообразные радионуклиды йода, трития, водорастворимые соединения плутония, газообразные радон и торон. Критическим органом при этом пути поступления радионуклидов являются кожа и слизистые оболочки.

4.2. Типы распределения радионуклидов в организме
сельскохозяйственных животных.
Группы радиотоксичности РВ

В реальной ситуации возможны различные варианты поступления радионуклидов в организм животных, они могут поступать одно- и многократно. Поведение радионуклидов в организме животных определяется следующими факторами:

1) биогенной значимостью для организмов стабильных изотопов поступающих радионуклидов, тропностью их к определенным тканям и органам: например, кальций выполняет специфическую роль, всегда входит в состав костной и других тканей, проявляет тропность к костной ткани, йод имеет большую тропность к щитовидной железе;

2) физико-химическими свойствами радионуклидов положением элементов в периодической системе элементов Д.И.Мен­делеева, валентной формой радиоизотопа и растворимостью химического соединения, способностью образовывать коллоидные соединения в крови и тканях и другими факторами.

Основываясь на вышеперечисленных обстоятельствах, по типу распределения радионуклиды подразделяются на четыре основные группы.

Таблица 17

Типы распределения радиоактивных элементов в организме

Тип распределения Элементы
Равномерный (диффузный) Элементы 1 группы период. системы – Н, Li, Na, К, Rb, Cs, Ru, Cl, Br и др.
Скелетный (остеотропный) Щелочно-земельные элементы: Ве, Са, Sr, Ra, Zr, Ir, F и др.
Печеночный La, Ce, Pm, Pu, Th, Mn и др.
Почечный Bi, Sr, As, U, Se и др.
Тиреотропный I, Br, As

 

Орган, в котором происходит избирательное накопление радионуклидов и вследствие чего он подвергается наибольшему облучению и повреждению, называется критическим.

Попавшие в организм радиоактивные изотопы так же, как
и стабильные изотопы элементов, в результате обмена выводятся из организма с калом, мочой, молоком, яйцом и другими
путями. Период времени, в течение которого из организма выводится половина поступивших радионуклидов, называется биологическим периодом полувыведения (Тбиол.).

Убыль радиоактивных изотопов элемента из организма ускоряется за счет радиоактивного распада. Период времени,
в течение которого распадается половина исходного количества радионуклидов (согласно закону распада радионуклидов), называется физическим периодом полураспада и обозначается Тфиз. Таким образом, снижение количества радионуклидов в организме происходит за счет биологических и физических процессов.

Время, в течение которого активность радионуклидов в организме уменьшается вдвое, называется эффективным периодом полувыведения, обозначается Тэфф. Эффективный период выведения рассчитывается по следующей формуле:

Тэфф. = Тфиз ´ Тбиол./Тфиз. + Тбиол. .

Эффективный период для различных радиоактивных изотопов отличается широким разнообразием: от нескольких часов (для 24Na, 64Cu-) и дней (для 131I, 32Р, 35S) до десятков лет (для 226Ra, 90Sr). Чем больше эффективный период у изотопа, тем выше степень радиотоксичности.

4.3. Классификация радионуклидов по степени
их токсичности

Радиотоксичность – свойство радиоактивных изотопов вызывать бо´льшие или ме´ньшие патологические изменения при попадании их в организм. Она зависит от следующих их свойств:

1. Вида радиоактивного превращения. При альфа-распаде поглощенная доза при одной и той же активности в органе или ткани будет в 20 раз больше по сравнению с поглощенной дозой при бета-распаде, следовательно, лучевое поражение в первом случае будет более выраженным.

2. Имеет значение величина энергии излучения радионуклидов – при большей энергии степень радиопоражаемости выше.

3. В том случае, если изотоп при радиоактивном распаде дает начало новому радиоактивному веществу или целому семейству, повышение суммарной мощности поглощенной дозы повышает радиотоксичность элемента.

4. Имеет значение путь поступления радиоактивных веществ в организм, наиболее опасен пищеварительный путь
поступления их.

5. Важно то, одно- или многократно поступает радиоактивное вещество в организм. При однократном поступлении концентрация их вначале возрастает до максимума, а затем в течение 15-20 суток снижается. При многократном поступлении концентрация радионуклидов остается высокой длительное время и соответственно возрастает радиопоражаемость организмов.

6. Имеет значение тип распределения радиоактивных элементов в организме. При избирательном накоплении РВ в тех или иных органах и системах последние являются критическими и наиболее радиопоражаемыми.

7. Время пребывания радионуклидов в организме определяет время облучения тканей. Чем больше эффективный период полувыведения радионуклидов, тем выше степень его радиотоксичности, так как суммарная доза при прочих равных условиях возрастает с увеличением Тэфф.

В зависимости от среднегодовой допустимой концентрации радионуклидов в воде все РВ подразделяются на 5 групп.

 

Таблица 18

Классификация радионуклидов по степени радиационной опасности

Груп-па Степень радиотоксичности Активность Радионуклиды
    Бк/л Ки/л  
А Особо высокая 3,7-370 10-10-10-8 210Pb, 226Ra, 232U, 238Pu, 230Th
Б Высокая 37-3700 10-9-10-7 106Ru, 131I, 144Ce, 210Bi, 234Th, 235U, 214Pu, 90Sr
В Средняя 370-37´103 10-8-10-7 22Na, 32P, 35S, 36Cl, 45Ca, 59Fe, 60Co, 89Sr, 90Y, 92Mo, 125Sb, 137Cs, 140Ba, 96Au
Г Малая 370-37´103 10-8-10-7 7Be, 14C, 18F, 57Cr, 55Fe, 64Cu, 129Te, 195Pt, 197Hg, 200Tl
Д - 14,8 ´10 4 4 ´ 10-6 Тритий (3H)и его химические соединения

4.4. Радиотоксикологическая характеристика 131I

Известны 24 радиоактивных изотопа йода с массовыми числами в интервале 117-126 и 128-139, все они искусственные, являются продуктами ядерных реакций. В молодых продуктах ядерного деления (ПЯД) содержатся коротко живущие изотопы 131I, 132I, 133I, 135I; через 1 неделю уже обнаруживаются только изотопы 131I и 133I, через 2 недели – 131I. Период физического полураспада 131I составляет 8,05 дня. Этот изотоп является бета- и гамма-излучателем, по степени радиотоксичности относится к высоко токсичным РВ (группа Б). Реальные источники загрязнения окружающей среды следующие:

1) испытания ядерного оружия в атмосфере, в воде и под землей;

2) радиоактивные отходы промышленных предприятий,
лаборатории, научно-исследовательских учреждений;

3) использование атомной энергетики в мирных целях и др.

Например, при делении 235U в ядерных реакторах накапливается до 2,5 ´ 104 Ки данного радиоизотопа на каждые 1 Мвт тепловой мощности.

Йод как химический элемент активно реагирует со многими веществами, образуя йодаты, перйодаты и йодиды. Пути поступления этого элемента в организм животных следующие: через органы пищеварения с кормом и водой, возможен ингаляционный путь поступления; поступление через кожу, слизистые оболочки, раны и др.

По биологическим свойствам данный элемент является активным биогенным веществом, обладает большой способностью к миграции по звеньям биологической цепи и включается в компоненты биосферы по цепочке: почва – вода, флора – фауна и принимает участие в биологическом цикле обмена веществ.

В растениях йод прочно фиксируется крахмалом и практически не удаляется с их поверхности при промывании водой. По размерам корневого поступления 131I превосходит 90Sr в 14 раз при произрастании на гумусной почве и в 2 раза – на песчаной.

При попадании в организм он полностью всасывается в кровь и до 60 % откладывается в щитовидной железе (критический орган). Концентрация йода в других органах по отношению к концентрации в крови распределяется следующим образом: кровь – 1; почки, печень, яичники – 2-3; молоко – 5-15; щитовидная железа – 10000.

Из организма как стабильные, так и радиоактивные элементы йода выводятся в результате обмена веществ с мочой, калом, молоком, а у птиц – с яйцами. У лактирующих коров из 1 л молока выделяется около 1 % поступившего в организм за 1 день количества радиойода; в желток куриных яиц при длительном поступлении переходит до 16 %, в белок – до 1 % от суточного количества.

При выпасе на территории, однократно загрязненной 131I, пик выведения с молоком приходится на 3 сутки, затем наступает спад, через 3 недели выведение сокращается в 4 раза. Следует отметить, что выведение данного элемента с молоком снижает депонирование его щитовидной железой и снижает радиопоражаемость; величина депонирования и выведения с молоком также зависит от уровня содержания в рационе стабильного йода. Введение в рацион йодистого калия на 50 % снижает депонирование щитовидной железой, на 70 % – депонирование в яйцах. Таким же действием обладает хлористый калий – снижение депонирования в щитовидной железе на 90 %.

Токсическое действие радиоактивного йода проявляется, прежде всего, в поражении щитовидной железы вплоть до разрушения (при воздействии в больших дозах). При этом быстро появляются признаки гипофункции щитовидной железы – потеря аппетита, угнетение, запоры, шелушение кожи и высыхание волоса и шерсти. Развиваются изменения в нервной и эндокринной системах, в кроветворной системе – снижение количества нейтрофилов, лимфоцитов, развитие анемии.

Изменения гормональной регуляции вызывают снижение воспроизводительных качеств, глубокие нарушения функции яичников и семенников. Структурные и функциональные изменения в других органах обуславливаются именно нарушением эндокринной регуляции со стороны щитовидной и половых
желез, надпочечников и гипофиза.





Поделиться с друзьями:


Дата добавления: 2017-02-28; Мы поможем в написании ваших работ!; просмотров: 776 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2357 - | 2221 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.