Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Общее уравнение прямой. Частные случаи общего уравнения прямой.




Общее уравнение прямой:

Ax + By + C = 0

 

Частные случаи общего уравнения прямой:

а) Если C = 0, уравнение (2) будет иметь вид

Ax + By = 0,

и прямая, определяемая этим уравнением, проходит через начало координат, так как координаты начала координат x = 0, y = 0 удовлетворяют этому уравнению.

б) Если в общем уравнении прямой (2) B = 0, то уравнение примет вид

Ax + С = 0, или .

Уравнение не содержит переменной y, а определяемая этим уравнением прямая параллельна оси Oy.

в) Если в общем уравнении прямой (2) A = 0, то это уравнение примет вид

By + С = 0, или ;

уравнение не содержит переменной x, а определяемая им прямая параллельна оси Ox.

Следует запомнить: если прямая параллельна какой-нибудь координатной оси, то в ее уравнении отсутствует член, содержащий координату, одноименную с этой осью.

г) При C = 0 и A = 0 уравнение (2) принимает вид By = 0, или y = 0.

Это уравнение оси Ox.

д) При C = 0 и B = 0 уравнение (2) запишется в виде Ax = 0 или x = 0.

Это уравнение оси Oy.

Взаимное расположение прямых на плоскости. Угол между прямыми на плоскости. Условие параллельности прямых. Условие перпендикулярности прямых.

l1 l2 l1: A1x + B1y + C1 = 0
l2: A2x + B2y + C2 = 0

S2 S1 Вектора S1 и S2 называются направляющими для своих прямых.

 

 

Угол между прямыми l1 и l2 определяется углом между направляющими векторами.
Теорема 1: cos угла между l1 и l2 = cos(l1 ; l2) =

Теорема 2: Для того, чтобы 2 прямые были равны необходимо и достаточно:

l1 = l2 ó

 

Теорема 3: чтобы 2 прямые были перпендикулярны необходимо и достаточно:

l1 l2 ó A1A2 + B1B2 = 0


Вопрос 13

Общее уравнение плоскости и его частные случаи. Уравнение плоскости в отрезках.

Общее уравнение плоскости:

Ax + By + Cz + D = 0

Частные случаи:

1. D=0 Ax+By+Cz = 0 – плоскость проходит через начало координат

2. С=0 Ax+By+D = 0 – плоскость || OZ

3. В=0 Ax+Cz+d = 0 – плоскость || OY

4. A=0 By+Cz+D = 0 – плоскость || OX

5. A=0 и D=0 By+Cz = 0 – плоскость проходит через OX

6. В=0 и D=0 Ax+Cz = 0 – плоскость проходит через OY

7. C=0 и D=0 Ax+By = 0 – плоскость проходит через OZ

Взаимное расположение плоскостей и прямых линий в пространстве:

1. Углом между прямыми в пространстве называется угол между их направляющими векторами.

Cos (l1; l2) = cos(S1; S2) = =

2. Углом между плоскостями определяется через угол между их нормальными векторами.

Cos (l1; l2) = cos(N1; N2) = =

3. Косинус угла между прямой и плоскостью можно найти через sin угла между направляющим вектором прямой и нормальным вектором плоскости.

4. 2 прямые || в пространстве, когда их || направляющие вектора

5. 2 плоскости || когда || нормальные вектора

6. Аналогично вводятся понятия перпендикулярности прямых и плоскостей.

 


 

Вопрос №14

Различные виды уравнения прямой линии на плоскости(уравнение прямой в отрезках, с угловым коэффициентом и др.)

Уравнение прямой в отрезках:
Допустим, что в общем уравнении прямой:

1. С = 0 Ах + Ву = 0 – прямая проходит через начало координат.

2. а = 0 Ву + С = 0 у =

3. в = 0 Ах + С = 0 х =

4. в=С=0 Ах = 0 х = 0

5. а=С=0 Ву = 0 у = 0

 

Уравнение прямой с угловым коэффициентом:

Любая прямая, не равная оси ОУ (В не=0), может быть записана в след. виде:

у = kx + b

k = tgα α – угол между прямой и положительно направленной линией ОХ

b – точка пересечения прямой с осью ОУ

 

Док-во:

Ах+Ву+С = 0

Ву= -Ах-С |:В

 

У =

 

У = kx + b

Уравнение прямой по двум точкам:


Вопрос №16

Конечный предел функции в точке и при x→∞

Конечный предел в точке х0:

Число А называется пределом функции y = f(x) при x→х­, если для любого Е > 0 существует б > 0 такое, что при х ≠x0, удовлетворяющее неравенству |х – х0| < б, выполняется условие |f(x) - A| < Е

 

Предел обозначается: = A

 

Конечный предел в точке +∞:

Число А называется пределом функции y = f(x) при x + , если для любого Е > 0 существует С > 0, такое что при x > C выполняется неравенство |f(x) - A| < Е

 

Предел обозначается: = A

 

Конечный предел в точке -∞:

Число А называется пределом функции y = f(x) при x→-∞, если для любого Е < 0 существует С < 0 такое, что при х < -С выполняется неравенство |f(x) - A| < Е

 

Предел обозначается: = A

 

Общее определение конечного предела:

Число А называется пределом функции y = f(x) при x→x0, если для любого Е > 0 существует б > 0 такое, что х принадл. тогда f(x) принадл. (А)

 





Поделиться с друзьями:


Дата добавления: 2017-02-28; Мы поможем в написании ваших работ!; просмотров: 5566 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.