Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Построение гидродинамической характеристики скважины




Физический смысл гидродинамической характеристики (ГДХ) в данной скважине получить заданный дебит.

Очевидно, что напор, необходимый для подъема заданного дебита должен поднимать жидкость с динамического уровня скважины и кроме того, создавать буферное давление.

 

, (7)

де dP(l) – градиент давления на глубине l с учетом зенитного угла, Па/м (в соответствии с разделом 3);

где Pбуф - буферное (устьевое) давление, Па;

Pпр – давление на приеме, Па;

rж(l) - плотность жидкости на глубине l, кг/м3;

g - ускорение свободного падения, м/с2;

L – глубина подвески установки, м;

Для того, чтобы построить ГДХ скважины, достаточно найти три ее точки. Если определить максимальный дебит скважины как дебит при котором забойное давление равно 0,7 от давления насыщения (), т.е. , то эти три точки соответственно равны: Q1 = 0,5· Qmax, Q2 = Qmax, Q3 = 1,05·Qmax. H1, H2, H3 находят из формулы (7).

Решение системы "скважина - насосная установка"

Если построить на одном графике ГДХ скважины и рабочий участок напорной характеристики УЭЦН, то становится видно, что решением системы "скважина - насосная установка" является пересечение этих двух кривых. Если же ГДХ скважины не пересекается с рабочим участком напорной характеристики УЭЦН, то данный типоразмер установки не будет работать в оптимальном режиме, т.е. решение системы отсутствует.

Таким образом можно найти решение системы для всех интересующих типоразмеров УЭЦН и выбрать лучший (с точки зрения максимального КПД или максимального дебита) вариант.

 

Рисунок 5.4 Графическое решение системы "скважина - УЭЦН"

 

На рисунке 5.4 показан пример графического решения системы "скважина - насосная установка".

Из пересечения кривых определяем дебит Q и H для установки. Это можно сделать не только графическим, но и аналитическим методом. Для аналитического решения необходимо аппроксимировать кривые полиномами с помощью сплайн-интерполяции (для случая, когда кривые построены по 3-м точкам - параболами, т.е. полиномами 2-й степени) и найти их пресечение аналитически (для двух парабол достаточно решить квадратное уравнение).

Аналитическое решение системы «скважина-УЭЦН» возможно численным методом. Решается система из уравнений (6) и (7). При этом итеративно подбирается глубина подвески, затем определяется забойное давление (в соответствии с разделом3), дебит скважины . В результате находим глубину подвески, соответствующую оптимальному давлению на приеме (согласно системы уравнений 1). Далее проверяем кривизну ствола скважины на данной глубине. Если она превышает норматив 3 мин на 10 м, производим увеличение глубины с шагом инклинометрии до тех пор пока не обнаружится участок, соответствующий нормативу кривизны. В том случае если такого участка не существует выбирается участок с наименьшей кривизной.

При этом ограничениями при подборе являются: 1) забойное давление меньше 0,7 давления насыщения; 2) не возможно достичь оптимального давления на приеме; 3) расчетный подача не попадает в рабочую область напорной характеристики УЭЦН.

Таким образом осуществляется подбор типоразмера УЭЦН и расчет его основных технологических характеристик: давления на приеме, глубины подвески, дебита.





Поделиться с друзьями:


Дата добавления: 2017-02-28; Мы поможем в написании ваших работ!; просмотров: 487 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2354 - | 2220 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.