Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


При пленочной конденсации водяных паров




 

I. Основные теоретические положения о теплообмене

при пленочной конденсации

 

При работе паровых энергетических и холодильных установок, в аппаратах кондиционирования воздуха и системах терморегулирования космических кораблей и т.п. постоянный уровень температуры для отвода или подвода теплоты часто достигается при конденсации паров рабочего тела – воды, фреонов, металлических, органических и других теплоносителей. Процесс конденсации занимает также важное место в химико-технологических производствах, например, в нефтехимии.

Движущей силой рассматриваемого процесса является разность парциальных давлений паров конденсирующейся жидкости над теплообменной поверхностью и на достаточном удалении от нее. Последнее достигается охлаждением упомянутой поверхности до температуры более низкой, чем температура насыщения паров , находящихся в объеме теплообменного аппарата, называемого конденсатором. Заметим сразу, что теплообменные поверхности в конденсаторах составляются из размещенных внутри цилиндрического кожуха труб или пластинчатых каналов, внутри которых движется охлаждающая среда – воздух, вода и т.д.

При отсутствии жировых или масляных пятен конденсация паров на большинстве технических поверхностей происходит в каждой точке и называется пленочной. Процесс пленочной конденсации представляется как диффузия молекул паров из парового пространства к стекающей по охлаждаемой поверхности пленке конденсата с последующей отдачей теплоты фазового превращения через толщу пленки конденсата к охлаждаемой стенке.

При отсутствии в паровом объеме конденсатора примесей неконденсирующихся газов сопротивление диффузии паров к стекающей пленке конденсата пренебрежимо мало и термическое сопротивление процессу конденсации практически определяется теплофизическими свойствами и характером течения пленки (ламинарным, переходным или турбулентным), а также взаимодействием ее с поступающим в конденсатор паром, скорость которого может быть весьма значительной.

Задача об определении интенсивности теплообмена при пленочной конденсации была впервые решена В. Нуссельтом в 1916 г. Он рассматривал процесс конденсации неподвижного пара на вертикальной охлаждаемой пластине шириной (рис. 16.1) в упрощающих предпосылках о том, что пленка конденсата движется ламинарно, безынерционно и безградиентно.

Тогда процесс течения пленки таков, что гравитационная сила, действующая на выделенную часть пленки высотой dy уравновешивается силой трения ее о стенку, т.е.

 

, (16.1)

 

где ρ – плотность жидкости; g – ускорение свободного падения; δ – толщина плёнки; - касательное напряжение трения на стенке.

  Рис. 16.1. Схема процесса конденса-ции пара на вертикальной пластине   Приращение dm массы стекающей жидкости на высоте пластины определяет движение пленки конденсата и обуслов-лено конденсацией пара на каждом выделенном элементе dy:   , (16.2)   где - количество теплоты, выделенное при конденсации; r – теплота фазового превращения.

С другой стороны, величина dm может быть определена дифференцированием выражения для массы конденсата m, проходящей через сечение, отстоящее на расстояние y от верхнего края пластины:

. (16.3)

Неизвестная средняя скорость движения жидкости в рассматриваемом сечении легко вычисляется при совместном рассмотрении системы уравнений, состоящей из динамического уравнения (16.1) и приводимых ниже уравнения (16.4) параболической формы профиля скоростей для ламинарного течения и уравнения (16.5) закона Ньютона для касательного напряжения трения :

 

, ()

 

, (16.4)

 

. (16.5)

 

В самом деле, вычисляя через (16.1) как и через (16.5) путем предварительного определения на стенке градиента скорости пленки дифференцированием уравнения профиля скоростей (16.4) в точке x = 0 как , получаем тождество:

 

или . (16.6)

 

В уравнениях (16.4) и (16.5) дополнительно обозначены – скорость жидкости в точке, отстоящей в рассматриваемом сечении на расстоянии x от стенки; - максимальное значение скорости в том же сечении; – динамическая вязкость жидкости.

При параболическом профиле скоростей средняя скорость жидкости составляет 2/3 от ее максимального значения

 

(16.7)

 

и масса конденсата m, проходящего через рассматриваемое сечение, определяется как

 

, (16.8)

 

тогда приращение массы конденсата dm на высоте пластины dy равно:

. (16.9)

 





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 523 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2320 - | 2074 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.