Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Энергия заряженных уединенного проводника, система проводников, конденсатора. Энергия электростатического поля.




Энергия заряженного уединенного проводника. Пусть имеется уединенный провод­ник, заряд, емкость и потенциал которого соответственно равны Q, С, j. Увеличим заряд этого проводника на d Q. Для этого необходимо перенести заряд d Q из бесконеч­ности на уединенный проводник, затратив на это работу, равную

 

Чтобы зарядить тело от нулевого потенциала до j, необходимо совершить работу

(95.2)

Энергия заряженного проводника равна той работе, которую необходимо совер­шить, чтобы зарядить этот проводник:

(95.3)

Формулу (95.3) можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Пола­гая потенциал проводника равным j, из (95.1) найдем

 

где - заряд проводника.

3. Энергия заряженного конденсатора. Как всякий заряженный проводник, конден­сатор обладает энергией, которая в соответствии с формулой (95.3) равна

(95.4)

где Q — заряд конденсатора, С — его емкость, Dj — разность потенциалов между обкладками конденсатора.

Используя выражение (95.4), можно найти механическую (пондеромоторную) силу, с которой пластины конденсатора притягивают друг друга. Для этого предположим, что расстояние х между пластинами меняется, например, на величину d x. Тогда действующая сила совершает работу d A=F d x вследствие уменьшения потенциальной энергии системы F d x = — d W, откуда

(95.5)

Подставив в (95.4) выражение (94.3), получим

(95.6)

Производя дифференцирование при конкретном значении энергии (см. (95.5) и (95.6)), найдем искомую силу:

где знак минус указывает, что сила F является силой притяжения.

4. Энергия электростатического поля. Преобразуем формулу (95.4), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовав­шись выражением для емкости плоского конденсатора (C=e 0 eS/d) и разности потенци­алов между его обкладками (D j = Ed. Тогда

(95.7)

где V= Sd — объем конденсатора. Формула (95.7) показывает, что энергия конден­сатора выражается через величину, характеризующую электростатическое поле, — на­пряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

(95.8)

Выражение (95.8) справедливо только для изотропного диэлектрика, для которого выполняется соотношение (88.2): Р = {e 0 Е.

Формулы (95.4) и (95.7) соответственно связывают энергию конденсатора с зарядом на его обкладках и с напряженностью поля. Возникает, естественно, вопрос о локализа­ции электростатической энергии и что является ее носителем — заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика изучает постоянные во времени поля неподвижных зарядов, т. е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные воп­росы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, способных переносить энергию. Это убедительно подтверждает основ­ное положение теории близкодействия о том, что энергия локализована в поле и что носителем энергии является поле.





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 807 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2237 - | 2045 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.