Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Механическая (нерелятивистская) точка зрения




Алгебраическая точка зрения

Итак, у нас есть замечательная функция экспонента, производная от которой совпадает с самой экспонентой.

Чётная часть экспоненты — гиперболический косинус:

Нечётная — гиперболический синус, их отношение — гиперболический тангенс:

При больших значениях аргумента , , . (см. рисунок).

Легко убедиться, что

Также легко проверить основное тождество гиперболической тригонометрии

Аналогично могут быть введены и обычные тригонометрические функции:

 

Механическая (нерелятивистская) точка зрения

Тригонометрические функции (косинус и синус) можно представить как чётное и нечётное решение дифференциального уравнения

Если рассматривать как время, то это — уравнение движения (нерелятивистского движения, описываемого обычным 2-м законом Ньютона) гармонического осциллятора (грузика на пружинке) с единичной массой и единичной жёсткостью. В этом случае при отклонении грузика от устойчивого положения равновесия (от нуля) на него действует сила равная величине отклонения и направленная в сторону положения равновесия. Эта возвращающая сила заставляет грузик колебаться около положения равновесия.

Аналогично гиперболические функции (гиперболические косинус и синус) можно представить как чётное и нечётное решения дифференциального уравнения

Если рассматривать как время, то это — уравнение движения (нерелятивистского движения, описываемого обычным 2-м законом Ньютона) «неправильного» гармонического осциллятора с единичной массой и единичной жёсткостью. В этом случае при отклонении грузика от неустойчивого положения равновесия (от нуля) на него действует сила равная величине отклонения и направленная в сторону отклонения. Эта отталкивающая сила заставляет грузик экспоненциально увеличивать отклонение от положения равновесия.

В обоих случаях в силу линейности дифференциальных уравнений мы можем рассматривать и как векторы в двухмерном пространстве (увеличение размерности больше 2 не даст ничего нового, т.к. движение всё равно будет проходить в одной плоскости). В обоих случаях сила направлена вдоль линии проходящей через начало координат, т.е. момент силы равен нулю, и момент импульса сохраняется. Закон сохранения момента импульса для точки в центральном поле даёт закон равных площадей (аналог 2-го закона Кеплера).

Из двух параметрических кривых

(единичная окружность, поскольку ) и

(правая ветвь единичной гиперболы, поскольку и ) могут быть получены общие решения уравнений и (в силу их линейности) с помощью растяжений (сжатий) по и , поворота системы координат и сдвига по времени. Что такое семейство решений общее, легко убедиться подсчитав параметры.

Закон равных площадей говорит, что приращение площади, заметаемой радиус-вектором пропорционально приращению времени. В случае единичной окружности и единичной гиперболы легко видеть, что площадь между осью , радиус-вектором и дугой кривой равна половине аргумента.


Это следует из рассмотрения бесконечномалого приращения площади в нулевой момент времени (ниже мы ещё к этому вернёмся и докажем подробнее)

Когда круговой угол пробегает значения точка бесконечное число раз пробегает окружность против часовой стрелки. Когда гиперболический угол пробегает значения точка один раз снизу вверх пробегает по ветви гиперболы.

 





Поделиться с друзьями:


Дата добавления: 2017-02-24; Мы поможем в написании ваших работ!; просмотров: 430 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2437 - | 2357 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.