Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Механическая работа и энергия

Механика

Кинематика

 

· Часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение, называется механикой. Классическая механика (механика Ньютона-Галилея) изучает законы движения макроскопических тел, скорости которых малы по сравнению со скоростью света в вакууме.

· Кинематика – раздел механики, предметом изучения которого является движение тел без рассмотрения причин, которыми это движение обусловлено.

· В механике для описания движения тел в зависимости от условий конкретных задач используются различные физические модели: материальная точка, абсолютно твердое тело, абсолютно упругое тело, абсолютно неупругое тело.

· Движение тел происходит в пространстве и во времени. Поэтому для описания движения материальной точки надо знать, в каких местах пространства эта точка находилась и в какие моменты времени она проходила то или иное положение. Совокупность тела отсчета, связанной с ним системы координат и синхронизированных между собой часов называется системой отсчета.

· Вектор , проведенный из начального положения движущейся точки в положение ее в данный момент времени называется вектором перемещения. Линия, описываемая движущейся материальной точкой (телом) относительно выбранной системы отсчета называется траекторией движения. В зависимости от формы траектории различают прямолинейное и криволинейное движение. Длина участка траектории, пройденного материальной точкой за данный промежуток времени, называется длиной пути.

· Скорость – это векторная физическая величина, которая характеризует быстроту движения и его направление в данный момент времени. Мгновенная скорость определяется первой производной радиуса-вектора движущейся точки по времени:

Вектор мгновенной скорости направлен по касательной к траектории в сторону движения. Модуль мгновенной скорости материальной точки равен первой производной длины ее пути по времени:

· Ускорение – векторная физическая величина для характеристики неравномерного движения. Она определяет быстроту изменения скорости по модулю и направлению. Мгновенное ускорение - векторная величина, равная первой производной скорости по времени:

Тангенциальная составляющая ускорения характеризует быстроту изменения скорости по величине (направлена по касательной к траектории движения):

Нормальная составляющая ускорения характеризует быстроту изменения скорости по направлению (направлена к центру кривизны траектории):

Полное ускорение при криволинейном движении – геометрическая сумма тангенциальной и нормальной составляющих:

,

· Векторная величина, определяемая первой производной угла поворота тела по времени, называется угловой скоростью:

Вектор направлен вдоль оси вращения по правилу правого винта.

· При равномерном вращении время, за которое точка тела совершает один полный оборот, т.е. поворачивается на угол 2π, называется периодом вращения:

Частота вращения – число полных оборотов, совершаемых телом при равномерном его движении по окружности в единицу времени:

· Угловое ускорение – это векторная физическая величина, определяемая первой производной угловой скорости по времени:

При ускоренном вращении тела вокруг неподвижной оси вектор сонаправлен вектору , при замедленном – противонаправлен ему.

· Связь между линейными (длина пути s, пройденного точкой по окружности радиуса R, линейная скорость v, тангенциальное ускорение , нормальное ускорение ) и угловыми характеристиками (угол поворота φ, угловая скорость ω, угловое ускорение ε) выражается следующими формулами:

.

 

 

Динамика

 

· Динамика – раздел механики, предметом изучения которого являются законы движения тел и причины, которые вызывают или изменяют это движение.

· В основе динамики материальной точки и поступательного движения твердого тела лежат законы Ньютона. Первый закон Ньютона утверждает существование инерциальных систем отсчета и формулируется следующим образом: существуют такие системы отсчета, относительно которых поступательно движущиеся тела сохраняют свою скорость постоянной, если на них не действуют другие тела или действие других тел компенсируется.

· Инерциальной называется система отсчета, относительно которой свободная материальная точка, на которую не действуют другие тела, движется равномерно и прямолинейно, или по инерции. Система отсчета, движущаяся относительно инерциальной системы отсчета с ускорением, называется неинерциальной.

· Свойство любого тела оказывать сопротивление изменению его скорости называется инертностью. Мерой инертности тела при его поступательном движении является масса.

· Сила – это векторная физическая величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

· Второй закон Ньютона формулируется следующим образом: ускорение, приобретаемое телом (материальной точкой), пропорционально равнодействующей приложенных сил, совпадает с ней по направлению и обратно пропорционально массе тела:

, или

Более общая формулировка второго закона Ньютона гласит: скорость изменения импульса тела (материальной точки) равна равнодействующей приложенных сил:

где - импульс тела. Второй закон Ньютона справедлив только в инерциальных системах отсчета.

· Всякое действие материальных точек (тел) друг на друга взаимно. Силы, с которыми действуют друг на друга материальные точки, равны по модулю, противоположно направлены и действуют вдоль соединяющей точки прямой (третий закон Ньютона):

Эти силы приложены к разным точкам, действуют парами и являются силами одной природы.

· В замкнутой механической системе выполняется фундаментальный закон природы – закон сохранения импульса: импульс замкнутой системы материальных точек (тел) с течением времени не изменяется:

const,

где n – число материальных точек в системе. Замкнутой (изолированной) называется механическая система, на которую не действуют внешние силы.

· Закон сохранения импульса является следствием однородности пространства: при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства не изменяются.

 

 

Механическая работа и энергия

 

· Энергия – универсальная мера различных форм движения материальных объектов и их взаимодействия. Количественной характеристикой процесса обмена энергией между взаимодействующими телами является физическая скалярная величина – работа сил.

Элементарная работа силы

Работа силы на произвольном участке траектории 1-2

· Мощность – физическая скалярная величина, характеризующая скорость совершения работы:

Мощность, развиваемая силой в данный момент времени, равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения этой силы:

· Консервативная сила – сила, работа которой при перемещении из одного положения в другое не зависит от траектории перемещения, а зависит только от начального и конечного положений тела. Силовое поле, в котором консервативные силы совершают работу, называется потенциальным полем.

· Кинетическая энергия - механическая энергия всякого свободно движущегося тела, численно равная работе, которую совершают действующие на тело силы при его торможении до полной остановки:

· Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

· Связь между консервативной силой и потенциальной энергией устанавливается выражением

grad Еп,

где

grad Еп =

Отсюда, как частные случаи, определяются: а) потенциальная энергия тела массой m на высоте h

б) потенциальная энергия упругодеформированного тела

где k – коэффициент упругости (для пружины – жесткость).

· Полная энергия механической системы – равна сумме кинетической и потенциальной энергий:

· Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние) называются консервативными системами. В таких системах выполняется закон сохранения механической энергии:

const,

т.е. полная механическая энергия консервативной системы со временем не изменяется. Это фундаментальный закон природы, который является следствием однородности времени.

· Система, в которой механическая энергия постепенно уменьшается за счет преобразования в другие формы энергии, называется диссипативной. Строго говоря, все системы в природе являются диссипативными. Однако при уменьшении механической энергии всегда возникает эквивалентное количество энергии другого вида. Другими словами, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом заключается физическая сущность всеобщего закона сохранения и превращения энергии – неуничтожимость материи и ее движения.

 

 

Механика твердого тела

 

· Вращательным называется движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

· Момент инерции тела относительно оси вращения – это физическая величина, равная сумме произведений масс n материальных точек тела на квадраты их расстояний до рассматриваемой оси:

· Теорема Штейнера: момент инерции тела Jz относительно любой оси вращения равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы m тела на квадрат расстояния а между осями:

· При вращении абсолютно твердого тела вокруг неподвижной оси z его кинетическая энергия равна половине произведения момента инерции относительно оси вращения на квадрат угловой скорости:

· Из сравнения формул и следует, что момент инерции – мера инертности тела при вращательном движении.

· Работа вращения тела идет на увеличение его кинетической энергии и определяется выражением где Mz – момент сил относительно оси вращения z.

· Уравнение динамики вращательного движения твердого тела относительно неподвижной оси z (аналог второго закона Ньютона) имеет вид:

где Lz – момент импульса твердого тела относительно оси z.

· В замкнутой механической системе момент внешних сил относительно неподвижной оси Mz =0 и , откуда Lz =const – закон сохранения момента импульса. Он является следствием изотропности пространства: инвариантность физических законов относительно выбора направления осей координат системы отсчета.



<== предыдущая лекция | следующая лекция ==>
Техническая характеристика. | Робота над правовими документами
Поделиться с друзьями:


Дата добавления: 2017-02-24; Мы поможем в написании ваших работ!; просмотров: 1393 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2340 - | 2282 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.