Коэффициенты активности электролитов
Как указывалось, в бесконечно разбавленных водных растворах не электролитов коэффициент активности равен единице.
Первое особенно сильно проявляется при малых концентрациях и обусловлено электростатическим притяжением между противоположно заряженными ионами. Силы притяжения между ионами преобладают над силами отталкивания, т.е. в растворе устанавливается ближний порядок, при котором каждый ион окружен ионами противоположного знака. Следствием этого является усиление связи с раствором, что находит отражение в уменьшении коэффициента активности. Естественно, что взаимодействие между ионами возрастает при увеличении их зарядов.
При возрастании концентрации все большее влияние на активность электролитов оказывает второе явление, которое обусловлено взаимодействием между ионами и молекулами воды (гидратацией). При этом в относительно концентрированных растворах количество воды становится недостаточным для всех ионов и начинается постепенная дегидратация, т.е. связь ионов с раствором уменьшается, следовательно, увеличиваются коэффициенты активности.
При более высоких концентрациях наряду с зарядом на величину активности начинает оказывать влияние и радиус ионов.
Было найдено, что в разбавленных растворах (т ≈ 0,01) коэффициент активности электролита является функцией ионной силы. Последняя определяется только концентрациями и валентностями присутствующих в растворе ионов, а не их природой.
Зависимость коэффициентов активности от концентрации электролитов
имеется ряд фактических данных о зависимости коэффициентов активности электролитов от моляльности, причем при некоторых концентрациях (от децимоляльных для одних электролитов до нескольких моляльностей для других) наблюдается точка минимума.
К активности представляют собой вероятность распределения ионных составляющих растворов по Больцману, которая применительно к растворам может быть аппроксимирована следующим образом:
g = exp(- ћw/kБT) (1.22)
g = exp[-(4p zKtzAne 2 ћ 2 CiNA/m· 1000 · kБ 2 T 2)1/2] (1.23)
где w - частота плазмоподобных колебаний «диссоциация-рекомбинация в нейтральные молекулы или ионные ассоциаты» (а) в растворах электролитов [12]
, (а)
w = (4p zKtzAne 2 CiNA/m· 1000)1/2;
ћ - постоянная Планка;
zie - заряд иона;
Ci - ионная составляющая электролита (Сi = С·a, С - исходная концентрация электролита, a - степень диссоциации электролита);
NA - число Авогадро;
m - приведенная масса несольватированных ионов электролита, определяемая по формуле: m = 1/ m Kt + 1/ m An;
kБ - константа Больцмана;
Т - температура по Кельвину.
В данной работе предложено модельное уравнение расчета оптимальных концентраций электролитов, соответствующих минимуму коэффициента активности.
Показано, что в точке минимума функции
g = f(C) (1.22)
при концентрации С 0, характеризующей g min имеет место равенство ћw = kБT, w = w0 и это характеризует особую точку, в которой происходит изменение знака диэлектрического отклика. При w =w0 и далее при всех w >w0 в растворе электролита образуется новая структура, элементами которой являются ионные ассоциаты. В этой особой точке коэффициент активности g имеет минимально возможное значение. Чтобы сшить решения до и после равенства ћw = kБT, сокращая показатель экспоненты и учитывая универсальные постоянные, приходим к виду:
g = 0.368·exp[-(245.467/ T)·(C 0/ μ)1/2], (1.23)
а затем − к выражению (4):
g = 0.368·exp{[ (C 0 ) 1/2 -(C) 1/2] /(C 0 ) 1/2} (1.24)
где С 0 - концентрация электролита в точке g min.
Из уравнений (1.22), (1.23) и (1.24) подстановкой универсальных постоянных и размерности в СГС: kБ = 1.38·10-16, е = 4.8·10-10, ћ = 1.05·10-27, N A = 6.023·1023, масса в ед. СГС равна 1.67·10-24, получаем:
С 0 = 1.02·10-6· m·Т 2/ (1.25)
Уравнения (1.23) и (1.24) выражают коэффициент активности для неассоциированных ионов электролита, тогда как литературные (экспериментальные) величины g± учитывают в этой точке фактические (реальные) взаимодействия сольватированных ионов с образованием молекулярной формы электролита или ионных ассоциатов по равновесию (а). Поэтому не следует ожидать полного тождества коэффициентов активности, теоретически оцененных по уравнению (1.24), с литературными, но, безусловно, важен характер зависимости коэффициентов активности от концентраций.
В табл.1.3 приведены полученные концентрации для 42 электролитов при gmin.
Что касается увеличения коэффициента активности g при больших концентрациях электролита, то не было предложено рациональной количественной теории, определяющей концентрации растворов с минимумом g и значительным увеличением его с повышением моляльности. В данной работе дается объяснение этому факту и рассчитаны оптимальные концентрации электролитов, соответствующие минимуму коэффициента активности. Так, за пределами концентрации С 0, соответствующей минимуму коэффициента активности, в связи с сокращением длин свободного пробега сольватированных ионов или молекул, превалирующими становятся межионные взаимодействия, приводящие преимущественно к ионным ассоциатам в полярных с низкими значениями диэлектрических проницаемостей растворителях или к молекулярным сольватам в неполярных с низкими значениями диэлектрических проницаемостей растворителях.