Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Примеры отношений эквивалентности




· Равенство («»), тривиальное отношение эквивалентности на любом множестве, в частности, вещественных чисел.

· Сравнение по модулю, («а ≡ b (mod n)»).

· В Евклидовой геометрии

· Отношение конгруэнтности («»).

· Отношение подобия(«»).

· Отношение параллельности прямых («»).

· Эквивалентность функций в математическом анализе:

Говорят, что функция эквивалентна функции при , если она допускает представление вида , где при . В этом случае пишут , напоминая при необходимости, что речь идет о сравнении функций при . Если при , эквивалентность функций и при , очевидно, равносильна соотношению .

· Отношение равномощности множеств.

Факторизация отображений

Множество классов эквивалентности, отвечающее отношению эквивалентности , обозначается символом и называется фактор-множеством относительно . При этом сюръективное отображение

называется естественным отображением (или канонической проекцией) на фактор-множество .

Пусть , — множества, — отображение, тогда бинарное отношение определённое правилом

является отношением эквивалентности на . При этом отображение индуцирует отображение , определяемое правилом

или, что то же самое,

.

При этом получается факторизация отображения на сюръективное отображение и инъективное отображение .

 

12. Понятие о функциональном отношении. Определения функции и отображения, композиция функций. Теорема об ассоциативном свойстве операции композиции отображений.

Функция — двухместное отношение R, определенное на некотором мно­жестве, отличающееся тем, что каждому значению x отно­шения xRy соответствует лишь одно-единственное значение y. Пример: «y отец x». Свойство функциональности отно­шения R записывается в виде аксиомы: (xRy и xRz)→(yz). Поскольку каждому значению x в выражениях xRy и xRz соответствует одно и то же значение, то y и z совпадут, окажутся одними и теми же. Функциональное отношение однозначно, поскольку каждому значению x отношения xRy соответствует лишь одно-единственное значение y, но не наоборот.

Теорема:
Операция композиции на множестве всех преобразований непустого множества ассоциативна. То есть, если даны отображения f:X->Y, g:Y->Z и h:Z->T, то fo(goh)=(fog)oh.
Доказательство:
Ясно, что композицию fo(goh) можно разложить на два действия. Сначала выполним композицию g и h, а затем, композицию f и полученного результата. Распишем композицию goh:
goh = Y->Z o Z->T=Y->T.
Далее, распишем композицию f с полученным результатом:
fo(goh)= X->Y o Y->T = X->T.
таким образом, мы получили отображение из X в T.
Теперь, рассмотрим композицию (fog)oh. Ее аналогично можно разбить на два этапа. Сначала произведем композицию f и g, а затем композицию полученного результата и h. Распишем композицию f и g:
fog= X->Y o Y->Z = X->Z.
Далее, композицию полученного результата и h:
(fog)oh= X->Z o Z->T = X->T.
Можно заметить, что fo(goh)=(fog)oh.
Теорема доказана.

13. Способы задания функций. Таблица функции, заданной на конечном множестве. График функции. Число различных функций и отображений на конечном множестве в конечное множество (с доказательством).

Способы задания функции

Аналитический способ

Функция, как математический объект, представляет собой бинарное отношение, удовлетворяющее определенным условиям. Функцию можно задать непосредственно как множество упорядоченных пар, например: есть функция . Однако, этот способ совершенно непригоден для функций на бесконечных множествах (каковыми являются привычные вещественные функции: степенная, линейная, показательная, логарифмическая и т. п.).

Для задания функции пользуются выражением: . При этом, есть переменная, пробегающая область определения функции, а — область значений. Эта запись говорит о наличии функциональной зависимости между элементами множеств. х и y могут пробегать любые множества объектов любой природы. Это могут быть числа, векторы, матрицы, яблоки, цвета радуги. Поясним на примере:

Пусть имеется множество яблоко, самолет, груша, стул и множество человек, паровоз, квадрат . Зададим функцию f следующим образом: (яблоко, человек), (самолет, паровоз), (груша, квадрат), (стул, человек) . Если ввести переменную x, пробегающую множество и переменную y, пробегающую множество , указанную функцию можно задать аналитически, как: .

Аналогично можно задавать числовые функции. Например: , где х пробегает множество вещественных чисел, задает некоторую функцию f. Важно понимать, что само выражение не является функцией. Функция, как объект, представляет собой множество (упорядоченных пар). А данное выражение, как объект, есть равенство двух переменных. Оно задает функцию, но не является ею.

Однако, во многих разделах математики, можно обозначать через f(x) как саму функцию, так и аналитическое выражение, ее задающее. Это синтаксическое соглашение является крайне удобным и оправданным.

Графический способ

Числовые функции можно также задавать с помощью графика. Пусть — вещественная функция n переменных.

Рассмотрим некоторое (n+1)-мерное линейное пространство над полем вещественных чисел (так как функция вещественная). Выберем в этом пространстве любой базис (). Каждой точке функции сопоставим вектор: . Таким образом, мы будем иметь множество векторов линейного пространства, соответствующих точкам данной функции по указанному правилу. Точки соответствующего аффинного пространства будут образовывать некоторую поверхность.

Если в качестве линейного пространства взять евклидово пространство свободных геометрических векторов (направленных отрезков), а число аргументов функции f не превосходит 2, указанное множество точек можно изобразить наглядно в виде чертежа (графика). Если сверх того исходный базис взять ортонормированным, получим «школьное» определение графика функции.

Для функций 3 аргументов и более такое представление не применимо ввиду отсутствия у человека геометрической интуиции многомерных пространств.

Однако, и для таких функций можно придумать наглядное полугеометрическое представление (например каждому значению четвертой координаты точки сопоставить некоторый цвет на графике).

Таким общим вопросом, например, является вопрос о сравнении множеств по мощности: если между двумя множествами существует взаимно однозначное отображение (биекция), то два данных множества называют эквивалентными или равномощными Это позволяет провести классификацию множеств в виде единой шкалы, начальный фрагмент выглядит следующим образом:

· конечные множества — здесь мощность множества совпадает с количеством элементов;

· счётные множества — множества эквивалентные множеству натуральных чисел;

· множества мощности континуума (например, отрезок действительной прямой или сама действительная прямая).

В соответствии с этим, имеет смысл рассматривать следующие примеры отображений:

· конечные функции — отображения конечных множеств;

· последовательности — отображение счётного множества в произвольное множество;

· континуальные функции — отображения несчётных множеств в конечные, счётные или несчётные множества.

 

14. Определение образа подмножества относительно функции. Теорема об образе объединения и пересечения подмножеств относительно отображения.





Поделиться с друзьями:


Дата добавления: 2017-02-24; Мы поможем в написании ваших работ!; просмотров: 3311 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2210 - | 2135 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.