Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Переход от А Мили к А Мура




Переход от А Мура к А Мили

Задан автомат

SA={AA, ZA, WA, A, A, a1A},

где

AA = {а1,:, аm,:, aM},

ZA= {z1,:, zf,:, zF},

WA = {w1,:, wg,:, wG};

A - реализует отображение AA х Z A в AA, A - отображение A A на WA, а a1A = a1 - начальное состояние.


Рис. 1-6. Граф автомата Мура S5

Рис. 1-7. Иллюстрация перехода от модели Мура
к модели Мили

Построим автомат Мили

SB={AB, ZB, WB, B, B, a1B},

у которого

AB = AA = {а1,:, аm,:, aM},

ZB= ZA = {z1,:, zf,:, zF},

WB = WA = {w1,:, wg,:, wG};

B = A, a1B = a 1A = a1

Функцию выходов Мили B определим следующим образом. Если в автомате Мура A(am,zf)=as и A(as)=wg, то в автомате Мили B(am,zf)=wg.

Переход от автомата Мура к автомату Мили при графическом способе задания иллюстрируется рис.1-7: выходной сигнал (wg), записанный рядом с вершиной (аs), переносится на все дуги, входящие в эту вершину. На рис. 1-8 приведен граф автомата Мили S6, эквивалентного автомату Мура S3 (рис. 1-4).

При табличном способе задания автомата SA таблица переходов автомата SB совпадает с таблицей переходов SA, а таблица выходов SB получается из таблицы переходов заменой символа as, стоящего на пересечении строки zf и столбца am, символом выходного сигнала wg, отмечающего столбец as, в таблице переходов автомата SA.

Из самого способа построения автомата Мили SB очевидно, что он эквивалентен автомату Мура SA. Действительно, если некоторый водной сигнал zf Z поступает на вход автомата SA, находящегося в состоянии аm, то он перейдет в состояние аs= Am,zf) и выдаст входной сигнал wg= As). Но соответствующий автомат Мили SB из состояния am, также перейдет в состояние as, поскольку Bm,zf) = Am,zf) = аs - и выдаст тот же выходной сигнал wg согласно способу построения функции В. Таким образом, для входной последовательности длины один поведение автоматов SA и SB полностью совпадает. По индукции нетрудно показать, что любое входное слово конечной длины, поданное на входы автоматов SA и SB , установленных в состояния am, вызовет появление одинаковых выходных слов и, следовательно, автоматы SA и SA аm эквивалентны.

Рис. 1-8. Автомат Мили S6эквивалентный автомату Мура S5

Рис. 1-9. Построение множества As

Переход от А Мили к А Мура

Прежде чем рассмотреть трансформацию автомата-Мили в автомат Мура, наложим на автомат Мили следующее ограничение: у автомата не должно быть преходящих состояний. Под преходящим будем понимать состояние, в которое при представлении автомата в виде графа не входит ни одна дуга, но которое имеет по крайней мере одну выходящую дугу (пример - состояние a1 на рис. 1-3). Итак, пусть задан автомат Мили

SA={AA, ZA, WA, A, A, a1A},

где

AA = {а1,:, аm,:, aM},

ZA= {z1,:, zf,:, zF},

WA = {w1,:, wg,:, wG};

A - реализует отображение AA х ZA в AA, A - отображение AA на WA , а a1A = a1 - начальное состояние.

Построим автомат Мура

SB={AB, ZB, WB, B, B, a1B},

у которого

ZB= ZA = {z1,:, zf,:, zF},

WB = WA = {w1,:, wg,:, wG};

Для определения АB каждому состоянию as AA поставим в соответствие множество As всевозможных пар вида s,w g), где wg - выходной сигнал, приписанный входящей в аs дуге (рис. 1-9): Аs={(as, wg) | (am, zf) = as и (am, zf) = wg}

Число элементов в множестве Аs равно числу различных выходных сигналов на дугах автомата S A, входящих в состояние as.
Множество остояний автомата SB получим как обединение множеств AS (s=1,:,M):

Рис. 1-10. Иллюстрация перехода от модели Мили к модели Мура

Функции выходов B и переходов B определим слудиющим образом. Каждому состоянию автомата Мура SB, представляющему собой пару вида (as, Wg), поставим в соответствие выходной сигнал Wg. Если в автомате Мили SA был переход а1Bm, zf) = Wk, то в SB (рис. 1-10) будет переход из множества состояний Am, порождаемых am, в состояние (as, Wk) под действием входного сигнала zf.

В качестве начального состояния а1B можно взять любое из состояний множества А1, которое порождается начальным состоянием а1 автомата SA. Напомним, что при сравнении реакции автоматов SA и SB на всевозможные входные слова не должен учитываться выходной сигнал в момент времени t=0, связанный с состоянием а1B автомата SB .





Поделиться с друзьями:


Дата добавления: 2017-02-24; Мы поможем в написании ваших работ!; просмотров: 377 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2395 - | 2207 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.