Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Аналитическая геометрия в пространстве




Прямоугольная система координат в пространстве.

 

Если указать способ, позволяющий устанавливать положение точек пространства заданием чисел, то говорят, что в пространстве введена система координат.

Декартова прямоугольная система координат в пространстве определяется заданием линейной единицы для измерения длин и трех пересекающихся в одной точке взаимно перпендикулярных осей, занумерованных в каком – нибудь порядке.

Точка пересечения осей называется началом координат, а сами оси – координатными осями, причем первую из них называют также осью абсцисс, вторую – осью ординат, третью – осью аппликат.

Обозначим начало координат буквой О, ось абсцисс – буквой Ох, ось ординат – О у, ось аппликат – буквами Оz.

Плоскость Oyz разделяет все пространство на два полупространства; то из них расположено в положительном направлении оси Ох, назовем ближним, другое – дальним.

Точно так же плоскость Oxz разделяет пространство на два полупространства; то из них, которое расположено в положительном направлении оси Оу, назовем правым, а другое – левым.

И плоскость Oxy разделяет все пространство на два полупространства; то из них, которое расположено в положительном направлении оси Oz, назовем верхним, другое - нижним.

 

 
 

 


 

Три плоскости Оху, Оxz и Oyz вместе разделяют пространство на 8 частей: их называют координатными октантами и нумеруют по определенному правилу. Первым октантом называют тот, который лежит одновременно в ближнем, правом и верхнем полупространствах, вторым – лежащий в дальнем, правом и верхнем полупространствах, третьим – лежащий в дальнем, левом и верхнем полупространствах; пятый, шестой, седьмой, восьмой октанты те, которые находятся в нижнем полупространстве соответственно под первым, вторым, третьим и четвертым.

 


2. Уравнение плоскости:

  • общее уравнение плоскости, частные случаи;

Теорема. В декартовых координатах каждая плоскость определяется уравнением первой степени.

Доказательство.

Считая заданной некоторую декартову прямоугольную систему координат, рассмотрим произвольную плоскость α и докажем, что эта плоскость определяется уравнением первой степени. Возьмем любую М0 (x0, y0, z0) лежащую на плоскости α, выберем любойвектор неравный 0 и перпендикулярный к плоскости α. Выбранный вектор обозначим буквой n., его проекции на оси координат буквами А, В, С.

Пусть M(x, y, z) - любая точка. Она лежит на плоскости α, в том и только в том случае, когда перпендикулярна .

Получим уравнение плоскости α, если выразим это условие через координаты x, y, z.

, .

Признаком перпендикулярности двух векторов является равенство их скалярного произведения, т.е. суммы попарных произведений соответствующих координат этих векторов. Т.о., перпендикулярна в том и только в том случае, когда

(1) – это и есть искомое уравнение плоскости α,

 

так как ему удовлетворяют x, y, z т. М в том и только в том случае, когда М лежит на плоскости α.

Раскрывая скобки, представим уравнение (1) в виде . Обозначая число , получим

 

Плоскость α действительно определяется уравнением первой степени.

 

Рассмотрим некоторые частные случаи уравнения первой степени, именно случаи, когда какие – либо из коэффициентов A, B, C, D обращаются в 0.

1) D = 0; - определяет плоскость, проходящую через начало координат. Действительно числа x = 0, y = 0, z = 0 удовлетворяют уравнению => (0; 0; 0) Î плоскости.

2) С = 0; - определяет плоскость параллельную оси Oz (или проходящую через эту ось). Действительно, в этом случае нормальный вектор имеет нулевую проекцию на ось Oz (С = 0); следовательно, этот вектор перпендикулярен Oz, а сама плоскость параллельна ей (или проходит через нее).

3) B = 0 и С = 0; уравнение Ax + D = 0 и определяет плоскость, параллельные координаты плоскости Oxz (или совпадающую с ней). Действительно, в этом случае нормальный вектор имеет нулевые проекции на оси Oy и Oz следовательно и , а сама плоскость параллельна им (или проходит через каждую из них). Но это и означает, что плоскость, определяемая уравнением Ax + D = 0, параллельна плоскости Oyz или совпадает с ней.

 

 





Поделиться с друзьями:


Дата добавления: 2017-02-24; Мы поможем в написании ваших работ!; просмотров: 633 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2487 - | 2299 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.