Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Критерий положительной определённости квадратичной формы




Доказательство критерия Сильвестра основано на методе Якоби приведения квадратичной формы к каноническому виду.

Для положительной определённости квадратичной формы необходимо и достаточно, чтобы главные миноры её матрицы были положительны.


1. «Необходимо.» Имеется положительно определённая квадратичная форма. j-ый диагональный элемент положителен, так как k(x)>0 в том числе и для вектора со всеми нулевыми координатами, кроме j-ой. При приведении матрицы к каноническому виду не будет нужно переставлять строки, и знаки главных миноров матрицы не изменятся. А в каноническом виде диагональные элементы положительны, и миноры положительны; следовательно, (так как их знак не менялся при преобразованиях), у положительно определённой квадратичной формы в любом базисе главные миноры матрицы положительны.

2. «Достаточно.» Имеется положительность миноров. Первый минор определяет знак первого диагонального элемента в каноническом виде. Знак отношения Mi+1/Mi определяет знак i+1-ого элемента в диагональном виде. Так получим, что в каноническом виде все элементы на диагонали положительные, то есть квадратичная форма определена положительно.[1]

 

Ля́мбда-ма́трица (λ-матрица, матрица многочленов) — квадратная матрица, элементами которой являются многочлены над некоторым числовым полем. Если имеется некоторый элемент матрицы, который является многочленом степени , и нет элементов матрицы степени большей чем , то степень λ-матрицы.

Используя обычные операции над матрицами любую λ-матрицу можно представить в виде:

В случае если определитель матрицы отличен от нуля, λ-матрица называется регулярной.

Аннули́рующий многочле́н для ма́трицы — многочлен, значение которого для данной квадратной матрицы равно нулевой матрице. Теорема Гамильтона-Кэли утверждает, что значение характеристического многочлена для квадратной матрицы равно нулевой матрице, а значит для каждой квадратной матрицы существует, по крайней мере, один аннулирующий многочлен степени, совпадающей с порядком матрицы.

Теоре́ма Га́мильтона — Кэ́ли — известная теорема из теории матриц, названная в честь Уильяма Гамильтона и Артура Кэли.

  Теорема Гамильтона — Кэли Любая квадратная матрица удовлетворяет своему характеристическому уравнению. Если — квадратная матрица и её характеристический многочлен, то .  

Непосредственная проверка оправдывает это утверждение для матрицы порядка 2:

Характеристический многочлен

тогда

  • Теорема Гамильтона — Кэли обуславливает существование аннулирующего многочлена.
  • Теорема Гамильтона — Кэли эквивалентна утверждению, что характеристический многочлен делится без остатка на минимальный многочлен.

 

Рассмотрим присоединённую (союзную) λ-матрицу , где — единичная матрица, тогда согласно определению присоединённой матрицы

Это означает, что -матрица делится без остатка на , а значит, согласно следствию из теоремы Безу для -матриц , и следовательно .

 

 





Поделиться с друзьями:


Дата добавления: 2017-02-24; Мы поможем в написании ваших работ!; просмотров: 478 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2294 - | 2064 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.