Лекции.Орг
 

Категории:


Классификация электровозов: Свердловский учебный центр профессиональных квалификаций...


Универсальный восьмиосный полувагона: Передний упор отлит в одно целое с ударной розеткой. Концевая балка 2 сварная, коробчатого сечения. Она состоит из...


Построение спирали Архимеда: Спираль Архимеда- плоская кривая линия, которую описывает точка, движущаяся равномерно вращающемуся радиусу...

сследование свойств регрессионной модели



2.6.1. Проверка значимости коэффициентов регрессиипроводится независимо друг от друга на основании t –критерия Стьюдента (Приложение Б):

, (2.7)

где sbj — оценка среднего квадратичного отклонения погрешности определения коэффициента.

Оценка дисперсии коэффициентов, найденных по экспериментальным данным вычисляется в соответствии с выражением

. (2.8)

Оценкой генеральной дисперсии воспроизводимости s2воспр, характеризующая точность одного измерения, является средняя из всех построчных дисперсий

. (2.9)

При выбранном уровне статистической значимости a и при числе степеней свободы γ=N(m–1) находят табличное значение коэффициента tтабл. Найденное табличное значение сравнивается с расчетным значением коэффициента. Если выполняется неравенство tтабл > tрасч, то принимается нуль- гипотеза, т.е. считается, что найденный коэффициент bj является статистически незначительным и его следует исключить из уравнения регрессии.

Оценка среднего квадратичного отклонения погрешности определения коэффициента sbj при достаточном числе степеней свободы может быть определена и через остаточную дисперсию:

, j=0, n; Сjj является диагональным коэффициентом корреляционной матрицы факторов и равен , а , — значение отклика, вычисленное по построенному уравнению регрессии и называется теоретическим значением отклика при заданном наборе факторов.

 

2.6.2. Проверка адекватности регрессионной модели.Математическая модель должна достаточно верно качественно и количественно описывать свойства объекта исследования. Для проверки адекватности оценивают отклонение предсказанного уравнением регрессии значения выходного параметра от результатов эксперимента yi. Для этого вычисляют дисперсию адекватности или остаточную дисперсию:

, (2.10)

где — число значимых коэффициентов модели, , причем коэффициент b0 в расчет не берется.

Если s2ост не превышает дисперсии опыта s2y, то полученная ММ адекватно представляет результаты эксперимента, иначе — описание считается неадекватным объекту. Проверка гипотезы об адекватности проводится с помощью F-критерия Фишера (Приложение А).

. (2.11)

По уровню значимости α и степеням свободы γ1=N- и γ2=N(m-1) определяется критическое значение F(α,γ1,γ2) . Если , то уравнение регрессии считается адекватным.

В случае если , то и неравенство будет выполняться всегда.

Как правило, вначале проверяют адекватность линейной ММ. Если пред­положение об адекватности подтверждается, то в качестве окончательной ММ выбирают линейную; если отклоняется — добавляют эффект взаимодействия с наибольшим коэффициентом и вновь проверяют гипотезу, и так до тех пор, пока существуют степени свободы.

Если в результате модель все же оказалась неадекватной, это говорит о том, что тип математической модели выбран неудачно и при данном шумовом уровне и классе точности измерительных приборов ММ должна быть уточнена. Для этого следует использовать более сложные модели, например, квадратичные (ортогональное и рототабельное композиционное планирование).

 





Дата добавления: 2017-02-11; просмотров: 118 | Нарушение авторских прав


Рекомендуемый контект:


Похожая информация:

Поиск на сайте:


© 2015-2019 lektsii.org - Контакты - Последнее добавление

Ген: 0.002 с.