Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


етодические указания к выполнению задания 2.




Методы расчета цепей постоянного (переменного) тока

Под расчетом цепи, в общем случае, понимают нахождение токов во всех ветвях схемы.

Основные методы расчета:

1. Метод токов ветвей.

2.Метод контурных токов.

3. Метод узловых напряжений.

4. Метод наложения.

5. Метод эквивалентных преобразований

Метод токов ветвей

• В общем случае токи сложной электрической цепи могут быть определены в результате совместного решения уравнений, составленных по первому и второму законам Кирхгофа. Для однозначного нахождения всех токов необходимо составить в уравнений, где в - число ветвей схемы (без источников тока).

Последовательность расчета следующая:

1. Проводят топологический анализ схемы.

1.1. обозначают токи во всех ветвях (I1, I2, …, ), произвольно выбирают их положительное направление и обозначают на схеме стрелками;

1.2. подсчитывают общее число узлов у и определяют число независимых узлов Nу=у-1 и показывают их на схеме;

1.3. подсчитывают число независимых контуров Nk = в-у+1, и показывают их на схеме дугой.

2. По первому закону Кирхгофа для независимых узлов и по второму закону Кирхгофа для независимых контуров относительно токов ветвей записывают уравнения. После приведения подобных членов они сводятся к системе линейных алгебраических уравнений (ЛАУ)

 

 


где xi =Ii– искомые токи ветвей; aji – постоянные коэффициенты, зависящие от параметров пассивных элементов схемы; вi – постоянные величины, зависящие от параметров активных элементов схемы.

3. Решая систему из в уравнений относительно токов, по методу Крамера находят токи во всех ветвях схемы:


 

где D – главный определитель системы; D i – определитель, получается из главного D путем замены i -го столбца на столбец свободных членов вi.

Если значения некоторых токов отрицательные, то действительные направления их будут противоположны первоначально выбранным направлениям. I1

Пример 1. Для электрической цепи рис. 1.1 n = 2, m = 3, и расчет токов цепи осуществляется путем решения следующей системы уравнений

2.5.1. Метод непосредственного применения законов Кирхгофа

Пример. Методом непосредственного применения законов Кирхгофа рассчитать токи в схеме на рис.

Число ветвей обозначим m, а число узлов n. Произвольно выбираем положительные направления токов в ветвях и направления обхода контуров. Поскольку в каждой ветви протекает свой ток, то число токов, которое следует определить, а следовательно, и число уравнений, которое нужно составить, равно m. По первому закону Кирхгофа составляем n-1 уравнений. Недостающие m-(n-1) уравнений следует составить по второму закону Кирхгофа для взаимно независимых контуров.


Рис. 2.20. Схема замещения сложной электрической
цепи с несколькими источниками энергии:
I, II, III – номера контуров

1. Проводим топологический анализ.

Она содержит пять ветвей и три узла, m = 5, n = 3. Составляем два уравнения по первому закону Кирхгофу, т. к. n – 1 = 2 (например, для узлов а и б).

2. Составляем уравнения по певому и второму законам Кирхгофа

Для узла "а" - I 1 - I 2 + I 4 = 0.

Для узла "б" - I 1 + I 2 - I 3 - I 5 = 0.

Остальные m - (n - 1) = 3 уравнения составляем по второму закону Кирхгофа.

Для контура I - R 1· I 1 - R 2· I 2 = - E 1 + E 2.

Для контура II - R 2· I 2 + R 3· I 3 + R 4· I 4 = - E 2 - E 3.

Для контура III - - R 3· I 3 + R 5· I 5 = E 3.

Решив систему, состоящую из пяти уравнений, находим пять неизвестных токов. Если какие-либо значения токов оказались отрицательными, то это означает, что действительные направления этих токов противоположны первоначально выбранным.

При расчётах сложных цепей с использованием ЭВМ удобна матричная форма записи. Уравнения, составленные по законам Кирхгофа, запишем в виде

- I 1 - I 2 + 0 + I 4 + 0 = 0

I 1 + I 2 - I 3 + 0 - I 5 = 0

R 1· I 1 - R 2· I 2 + 0 + 0 + 0 = - E 1 + E 2

0 + R 2· I 2 + R 3· I 3 + R 4· I 4 + 0 = - E 2 - E 3

0 + 0 + - R 3· I 3 + 0 + R 5· I 5 = E 3.

В матричной форме

или [ R ]·[ I ] = [ Е ],

где [ R ] – квадратная (5 х 5) матрица, элементами которой являются коэффициенты при неизвестных токах в исходных уравнениях;

[ I ] – матрица - столбец неизвестных токов;

[ E ] – матрица - столбец, элементами которой могут быть алгебраическая сумма ЭДС.

Решение матричного уравнения ищут в виде

[ I ] = [ R ]-1·[ E ],

где [ R ]-1 – матрица, обратная матрице [ R ].

Рассмотренный метод расчета неудобен, если в цепи имеется большое количество узлов и контуров, поскольку потребуется решать громоздкую систему уравнений. В таких случаях рекомендуется применять метод контурных токов, позволяющий значительно сократить число расчетных уравнений 2.

Метод контурных токов

Метод основан на 2-м законе Кирхгофа. При его использовании в составе анализируемой схемы выбирают независимые контуры и предполагают, что в каждом из контуров течет свой контурный ток. Для каждого из независимых контуров составляют уравнение по 2-му закону Кирхгофа и их решают. Токи в ветвях находят как алгебраическую сумму контурных токов, протекающих по данной ветви.

Все источники сигналов, представленные источниками тока, заменяют источниками ЭДС (рис. 4.29).

Рис. 4.29
E
 
 
I
Z i I
Z i II
Эта схема эквивалентна, если

а) E = I Z i I;

б) Zi II = Zi I.

1) Топологический анализ схемы.

а) Как и в предыдущем методе, определяют число ветвей b.

б) Определяют число узлов у.

в) Подсчитывают число независимых контуров Nk = b – y + 1.

Все независимые контуры обозначены дугами со стрелками на них, которые показывают положительное направление обхода.

Все контуры нумеруют и каждому контуру присваивают свой контурный ток: Ik 1; Ik 2; IkNk.

За положительное направление контурного тока принимают положительное направление обхода контура.

2) По второму закону Кирхгофа относительно контурных токов записывают уравнения, которые после приведения подобных членов образуют систему линейных уравнений Nk = Nk порядка:

где Iki – контурный ток i -го контура;

Zii – собственное сопротивление i -го контура и равно алгебраической сумме сопротивлений, входящих в i -й контур;

Zji – сопротивление смежных ветвей между i -м и j -м контурами. Оно представляет собой алгебраическую сумму, причем ее члены берутся со знаком «+», если контурные токи направлены одинаково, и со знаком «–», если они направлены встречно;

Eki – контурная ЭДС i -ого контура. Она равна алгебраической сумме ЭДС, входящих в i -й контур. Контурная ЭДС Eki берется со знаком «+», когда направление источника ЭДС и направление тока совпадают, и со знаком «–», если они направлены встречно.

3) По правилу Крамера находят контурные токи Iki= .

4) Токи в ветвях находят как алгебраическую сумму контурных токов, протекающих через данную ветвь. В алгебраической сумме контурные токи берутся со знаком «+», если ток ветви и совпадает с контурным током и «–» если не совпадает.

Если токи ветви оказались положительными, то выбранное направление тока совпадает с истинным и наоборот.

Пример. Дана комплексная схема замещения электрической цепи (рис. 4.30). Определить токи во всех ветвях.

1. Проводим топологический анализ

а) b = 6; б) y = 4; в) Nk = 6 – 4 + 1=3.

2) Составим систему уравнений по методу МКТ

Рис. 4.30
I
Z 1
II
III
I 1
E 1
I 5
I 2
I 3
I 4
Z 3
Z 6
Z 5
Z 4
Z 2
Ik 2
Ik 3
Ik 1
где:

E 11 = E 1; E 22 = 0; E 33 = 0.

3) По методу Крамера находим контурные токи Iki = .

4) Находим токи в ветвях: I 1 = Ik 1; I 2 =
= Ik
1 Ik 2; I 3 = Ik 1 Ik 3; I 4 = – Ik 2 + Ik 3; I 5 = Ik 2; I 6 = Ik 3.

Пример 2. Рассмотрим электрической цепи постоянного тока, рис. 2.21.

1. Проводим топологический анализ

а) b = 5; б) y = 3; в) Nk = 5 – 3 + 1=3.

2) Для каждого контура записывают уравнение второго закона Кирхгофа,


Рис. 2.21. – Расчетная схема для метода контурных токов

В каждом из трех контуров протекает свой контурный ток J 1, J 2, J 3. Произвольно выбираем направление этих токов, например, по часовой стрелке. Составляем уравнения по второму закону Кирхгофа для каждого контура с учетом соседних контурных токов, протекающих по смежным ветвям

(R 1 + R 2J 1 - R 2· J 2 = E 2 - E 1

- R 2· J 1 + (R 2 + R 3 + R 4J 2 - R 3· J 3 = - E 2 - E 3

- R 3· J 2 + (R 3 + R 5J 3 = E 3.

Решив систему уравнений, находят контурные токи J 1, J 2, J 3. Затем определяют реальные токи в ветвях, причем токи во внешних ветвях равны контурным, а в смежных – алгебраической сумме 2-х контурных токов, протекающих в данной ветви

I 1 = J 1; I 2 = J 2 - J 1; I 3 = J 2 - J 3; I 4 = J 2; I 5 = J 3.

Исходная система уравнений в матричной форме

или

[ R ]·[ J ] = [ E ],

где [ R ] – квадратная матрица коэффициентов контурных токов;

[ J ] – матрица – столбец контурных токов; [ E ] – матрица – столбец ЭДС.

Решением матричного уравнения является матрица

[ J ] = [ R ]-1 ·[ E ],

где [ R ]-1 – матрица, обратная матрице [ R ]

• Пример 3. Для электрической цепи, схема которой приведена на рис. 1.1, получим следующие уравнения:

получим следующие уравнения:

 

 


По методу Крамера найдем контурные токи:

 

Действительные токи в ветвях: I 1 = Ik 1; I 2 = Ik 2 – Ik 1; I 3 = Ik 2.

Пример 4. Расчет цепи методом контурных токов на рис. 2.22.


Рис. 2.22. – Расчет цепи методом контурных токов

Для схемы замещения электрической цепи, показанной на рис. 2.22, задано: E 1 = 30 B; E 2 = 10 В; R 1 = 8 Ом; R 2 = 15 Ом; R 3 = 36 Ом. Требуется определить токи в ветвях методом контурных токов. Составить баланс мощности.

Схема содержит три ветви (m = 3), два узла (n = 2). Выбираем положительные направления токов в ветвях произвольно. Число уравнений, составленных по методу контурных токов, равно m - (n - 1) = 2. Задаем направление контурных токов (например, по часовой стрелке) и составляем систему уравнений

(R 1 + R 2J 1 - R 2· J 2 = E 1 - E 2

- R 2· J 1 + (R 2 + R 3J 2 = E 2.

Подставляя численные значения сопротивлений резисторов и ЭДС в приведённые уравнения, находим контурные токи J 1, J 2 (Например, методом определителей)

20 = 23· J 1 – 15· J 2

10 = - 15· J 1 + 51· J 2

Токи в ветвях

I 1 = J 1 = 1,23 А; I 2 = - J 2 + J 1 = 1,23 - 0,56 = 0,67 А; I 3 = J 2 = 0,56 А.

Составляем баланс мощностей.

Мощность генераторов (источников)

Р И = Е 1· I 1 - Е 2· I 2 = 30·1,23 – 10·0,67 = 30,2 Вт,

где произведение Е 2· I 2 имеет знак минус (ток через источник не совпадает с ЭДС, значит источник ЭДС работает в режиме потребителя электрической энергии).

Мощность, потребляемая нагрузкой, составляет

Р Н = R 1· I 12 + R 2· I 22 + R 3· I 32 = 8·1,232 + 15·0,562 + 36·0,562 = 30,13 Вт.

Погрешность

составляет менее 1%, т. е. токи найдены верно.

 

Метод узловых потенциалов (МУП)

Метод основан на применении первого закона Кирхгофа. В нем за неизвестные величины принимают потенциалы узлов. По закону Ома определяют токи во всех ветвях схемы.

Все источники ЭДС, имеющиеся в схеме, заменяют источниками тока (рис. 4.31).

а) I = E / Zi I;

Рис. 4.31
E
 
 
I
Z i I
Z i II

 

б) Zi II = Zi I.

1) Топологический анализ.

а) Подсчитывают число ветвей b и число узлов y. Определяется количество независимых узлов Ny = y – 1.

б) Нумеруют все узлы. Один из узлов, к которому сходится наибольшее число ветвей, считают нулевым, где – потенциал нулевого узла.

2) По 1-му закону Кирхгофа составляют уравнения для N узлов схемы и решают их относительно потенциалов узлов:

,

где Yii – собственная узловая проводимость. Она равна сумме проводимостей всех ветвей, сходящихся в i -м узле, все они берутся со знаком «+»;

Yij – межузловая проводимость между i -м и j -м узлами. Проводимости всех узлов берутся со знаком «–»;

Iii – алгебраическая сумма токов источников тока, сходящихся в i -м узле. Втекающие токи записываются в эту сумму со знаком «+», а вытекающие – со знаком «–».

3) Потенциалы узлов находят по формуле Крамера

.

4) Токи в ветвях находят по закону Ома

I = (j1 – j2)/ Z.

Пример. Дана электрическая цепь (рис. 4.32). Рассчитать токи во всех ветвях.

Z 2
I 2
Предварительно преобразуем все источники напряжения (рис. 4.32) в источники тока (рис. 4.33).

Z 4
Z 3
Z 1
I 1
I 3
I
I
I 4
s cy8ucmVsc1BLAQItABQABgAIAAAAIQDZiMiZDQMAAIYGAAAOAAAAAAAAAAAAAAAAAC4CAABkcnMv ZTJvRG9jLnhtbFBLAQItABQABgAIAAAAIQBMM0wR4AAAAAoBAAAPAAAAAAAAAAAAAAAAAGcFAABk cnMvZG93bnJldi54bWxQSwUGAAAAAAQABADzAAAAdAYAAAAA " filled="f" stroked="f">
I 2
l bHMvLnJlbHNQSwECLQAUAAYACAAAACEAKFUVcA8DAACGBgAADgAAAAAAAAAAAAAAAAAuAgAAZHJz L2Uyb0RvYy54bWxQSwECLQAUAAYACAAAACEAO2UGRd8AAAAKAQAADwAAAAAAAAAAAAAAAABpBQAA ZHJzL2Rvd25yZXYueG1sUEsFBgAAAAAEAAQA8wAAAHUGAAAAAA== " filled="f" stroked="f">
I 1
E 2
E 1
Z 4
Z 3
Z 2
Z 1

Рис. 4.32 Рис. 4.33

 

Проведем топологический анализ.

а) число ветвей b = 4;

б) число независимых узлов Nу = 2, их потенциалы: φ1 и φ2 (рис. 4.33).

Составим систему уравнений по методу узловых потенциалов:

;

.

По методу Крамера найдем потенциалы узлов .

По закону Ома найдем токи во всех ветвях схемы:

.

 


МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЙ по теме цепи переменного тока





Поделиться с друзьями:


Дата добавления: 2017-02-11; Мы поможем в написании ваших работ!; просмотров: 337 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2196 - | 2142 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.