Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


оказательная форма комплексного числа.




Любое комплексное число (кроме нуля) можно записать в показательной форме: , где – это модуль комплексного числа, а аргумент комплексного числа.

Пример 7.1. Представить в показательной форме комплексные числа: , , , .

9.1. , ,

9.2. , ,

9.3. , ,

9.4. , ,

Пример1.. Решить систему линейных уравнений, используя правило Крамера и метод обратной матрицы:

Решение.

1. Правило Крамера.

Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители:

По формулам Крамера находим:

Ответ:

Пример 2. Решить уравнение: .

Решение. Данное уравнение относится к классу дифференциальных уравнений первого порядка с разделяющимися переменными. Разделим переменные:

. Теперь уравнение можно интегрировать: . Находим неопределенные интегралы: , откуда: - это общий интеграл данного дифференциального уравнения. Ответ:

Пример 3. Решить уравнение при условии .

Решение. Данное уравнение является линейным дифференциальным уравнением первого порядка, для его решения применяем метод Бернулли. Делаем замену: , где и - неизвестные функции. Получаем: или . Неизвестную функцию найдем из условия : , , откуда . Тогда для нахождения второй неизвестной функции нужно решить уравнение: , откуда: . Тогда и путем интегрирования последнего равенства получаем . Тогда общее решение исходного уравнения имеет вид: . Для нахождения частного решения воспользуемся начальным условием: . Подставляя соответствующие значения переменных и в общее решение, получаем: , откуда . Тогда частное решение данной задачи имеет вид: . Ответ: .

Пример 4. Решить уравнение: у ² +2 у' +5 у = 0.

Решение. Данное уравнение является линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами. Для его решения составляем характеристическое уравнение: . Это алгебраическое уравнение второго порядка, его корни – комплексные, сопряженные числа: . Тогда общее решение данного уравнения имеет вид: . Ответ: .

Пример 5. Исследовать на сходимость ряд

Решение. Для исследования данного ряда на сходимость можно применить признак Даламбера. Для этого находим и . Тогда: , следовательно, по признаку Даламбера данный числовой ряд сходится.

Пример 7. Бросают три игральные кости. Найти вероятность того, что на верхних гранях появится число очков, сумма которых делится на пять.

Решение. Определим испытание и его результат, т. е. элементарное событие. Испытанием является бросание трех игральных костей; результатом – одно из сочетаний очков 1,..., 6 на верхних гранях трех костей.

Исследуемое событие А – сумма очков на трех костях делится на пять. Вероятность события А вычислим с помощью формулы:

Р(А) = m/n.

Общее количество элементарных событий п можно найти по правилу умножения. На каждой игральной кости 6 граней и все они могут сочетаться со всеми гранями других костей. Итак, получаем n = 6 × 6 × 6 = 216.

Количество элементарных событий т, входящих в состав события А или благоприятствующих событию А,найдем выписав всевозможные результаты испытаний и оставив из них только те, для которых сумма очков на всех трех костях делится на пять. Можно облегчить работу, выписав всевозможные исходы бросания первых двух костей, сочетая с ними подходящие значения количества очков, выпавших на третьей кости. Имеем:

             
               
               
               
               
               
               

 

В результате получаем, что Р (т) = 43, значит, Р (А) = 43/216.

Ответ: Р (А) = 43/216.

Пример 8. Вероятность выигрыша по одному билету равна 0,2. Имеется шесть билетов. Найти вероятности следующих событий: а) два билета будут выигрышными; б) выигрышных билетов будет от двух до четырех.

Решение. Для вычисления искомых вероятностей воспользуемся формулой Бернулли: . По условию задачи , .

а) Рассмотрим случайное событие А: два билета из шести будут выигрышными. Его вероятность: .

б) Рассмотрим случайное событие В: выигрышных билетов будет от двух до четырех. Это сложное событие состоит из следующих:

В1: два билета из шести будут выигрышными;

В2: три билета из шести будут выигрышными;

В3: четыре билета из шести будут выигрышными.

Тогда В= В123 и Р(В) = Р(В1)+Р(В2)+Р(В3).

Находим по формуле Бернулли соответствующие вероятности:

,

,

.

Тогда искомая вероятность: Р(В) = 0,2458+0,0492+0,0061=0,3011

Ответ: P(B)=0,3011.

Пример 9. После обработки результатов эксперимента составлена таблица, в первой строке которой указаны группы возможных значений некоторой случайной величины хi, а во второй строке – численность каждой группы значений m:

х i 21 17 35 11
m i 3 11 14 5

Найти объем выборки ; относительные частоты , соответствующие каждой отдельной группе значений случайной величины; составить вариационный ряд распределения данной случайной величины. Найти числовые характеристики выборки: среднее арифметическое, выборочную дисперсию и среднеквадратическое отклонение.

Решение. Найдем объем выборки n по формуле: , где – число столбцов в таблице. Тогда n = 3+11+14+5=33.

Относительные частоты , соответствующие каждой отдельной группе значений случайной величины, находим по формулам: . Получаем: , , , .

Составим вариационный ряд распределения данной случайной величины:

х i        
1/11 1/3 14/33 5/33

Находим числовые характеристики выборки:

а) среднее арифметическое находим по формуле:

б) выборочная дисперсия находится по формуле: .

Получаем:

в) среднеквадратическое отклонение: .

 

 





Поделиться с друзьями:


Дата добавления: 2017-02-11; Мы поможем в написании ваших работ!; просмотров: 348 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2255 - | 1994 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.