Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пусть передаточная функция звена имеет вид




Частотная характеристика

(1.25)

В записи (1.25) ЧХ формально представляет собой отношение двух комплексных чисел числителя и знаменателя.

Считая (1.25) показательной формой записи ЧХ, вычисляем АЧХ и ФЧХ:

- АЧХ: (1.26)

- ФЧХ: (1.27)

ВЧХ и МЧХ рассчитываем, используя дополнительное умножение числителя и знаменателя ЧХ на комплексно-сопряженное к знаменателю число:

откуда

(1.28)

Как видно, вывод выражений A (ɷ), W(j ɷ ), P (ɷ)и Q (ɷ)принципиально прост. Сложным являются вычисления координат точек годографа ЧХ, если принять во внимание, что при этих вычислениях нужно знать:

- до какого значения аргумента ɷ нужно считать (полный интервал изменения ɷот 0 до ¥)?;

- и каким должен быть шаг j ɷвычислений?

В сравнении с расчётами переходных процессов расчёты ЧХ сложнее тем, что нет простых процедур определения конечной (верхней) частоты ɷсчёта и шага j ɷ. Последний, к тому же, будет неравномерным.

Здесь следует пользоваться проверенными на практике приёмами расчёта ЧХ:

1. Необходимо предугадать вчерне вид годографа, а именно, где его начало и конец, через какие квадранты комплексной плоскости и в каком порядке он пройдёт при изменении частоты ɷот 0 до ¥.

Прежде всего, находят точки пересечения годографа с осями координат. Для этого решают уравнения:

P (w) =0 Þ -w4+2w2+9=0 Þ w=2,04, т.е. годограф пересекает мнимую ось на частоте w5=2,04, если в качестве иллюстрации расчётов принять рис.1.7;

Q (w) =0 Þ w(0,5w2+1,5) =0 Þ w=0, т.е. годограф пересекает действительную (вещественную) ось на частоте w1=0.

Далее вычисляют значения P (ɷ)и Q (j ɷ)при найденных частотах и на бесконечности при ɷ =¥.

2. Определяют значение угла j (¥), с которым годограф входит в начало координат, по формуле

j (¥) =-90o (n-m), (1.29)

где n и m - степени полиномов p, соответственно, знаменателя и числителя передаточной функции.

По результатам описанных вычислений строится в черновом варианте годограф ЧХ (рис.1.7).

3. Подготавливается таблица вычислений, состоящая из 5-ти строк (табл.1.4).

Таблица 1.4

w w 1=0 w 2 w 3 w 4=2,04 w 5 w 6 w 7 w
P (w)       0       0
Q (w) 0             0
A (w)               0
(j w) 0     -90o       -180o

В этой таблице прежде всего нужно заполнить первую строку - строку частот w. Все остальные строки затем заполнятся вычислениями по формулам (1.26)...(1.28).

Сначала находим частоты w2 и w3 для точек годографа, лежащих в 4-м квадранте. Очевидно, что эти частоты должны быть такими, чтобы точки годографа на этих частотах равномерно заполняли бы участок в 4-м квадранте, т.е. угол j между соседними точками был примерно равен 30о (ни в коем случае не надо стремиться получить точно 30о, а лучше задать, например, 30о 10о). Руководствуясь этими соображениями, задаёмся частотой в пределах от 0 до 2,04 (эти значения верны только для рассматриваемого числового примера!) и вычисляем угол j. Если он равен 30о10о, то нами найдена (точнее - угадана) частота w2. Если вычисления дали 60о10о, то найдена частота w3. Иначе нужно снова задать значение w. Аналогично определяют частоты w5...w7 для 3-го квадранта.

После заполнения строки частот заполняется значениями вся таблица. По значениям P (w) и Q (w строится годограф) W (wj)(рис.1.7), а по значениям A (wj (w)строятся АЧХ и ФЧХ (рис.1.8).

Замечание к расчётам по формуле (4.7) значений угла j на калькуляторе, компьютере и по таблицам тригонометрических функций. Во всех перечисленных случаях определяется только главные значения арктангенса - ARCTG (*), - которые находятся в пределах от -90о до +90о. Действительное значение угла определяется с учётом структуры выражения, находящегося под знаком arctg, которое является отношением мнимой Q к действительной P части соответствующего комплексного числа. Если P>0, то угол лежит в 1-м или 4-м квадрантах, если P<0, то угол лежит во 2-м или 3-м квадрантах. При Р=0 угол равен 90о:

где sign (Q)- знак числа Q.

Как видно из приведенных выше приёмов расчёта ЧХ такой расчёт содержит достаточно громоздкие вычисления.

 





Поделиться с друзьями:


Дата добавления: 2017-02-11; Мы поможем в написании ваших работ!; просмотров: 268 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2321 - | 2074 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.