Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Назначение и принцип действия




Система зажигания предназначена для воспламенения рабочей смеси в цилиндрах бензиновых двигателей внутреннего сгорания (ДВС).

Развитие автомобилей первоначально было связано с системой зажигания от магнето, но оно достаточно быстро было вытеснено батарейной системой зажигания, которая в различных вариантах и применяется на современных автомобилях.

Тенденции развития ДВС связаны с повышением их экономичности, снижением токсичности отработавших газов, уменьшением массы и габаритных размеров, повышением частоты вращения коленчатого вала и степени сжатия.

Это оказывает влияние на конструкцию и схемное исполнение систем зажигания, не затрагивая, однако, основного принципа их действия — накопления энергии в магнитном или электрическом поле с последующим мгновенным выделением ее в искровом промежутке свечи в нужный момент такта сжатия в рабочем цилиндре и в соответствии с заданным порядком работы цилиндров двигателя.

Разряд в искровом промежутке вызывается импульсом напряжения, величина которого зависит от температуры и давления в камере сгорания, конфигурации и размеров искрового промежутка. Величина импульса должна обеспечиваться системой зажигания с определенным запасом, с учетом износа электродов свечи в эксплуатации. Обычно коэффициент запаса составляет 1,5 - 1,8, а величина импульса напряжения лежит в пределах 20 - 30 кВ.

 

Процесс сгорания рабочей смеси разделяется на три фазы: начальную, когда формируется пламя, возникающее от искрового разряда в свече, основную, кoгда пламя распространяется на большей части камеры сгорания, и конечную, когда пламя догорает у стенок камеры. Этот процесс требует определенного времени. Наиболее полное сгорание рабочей смеси достигается своевременной подачей сигнала на воспламенение, т.е. установкой оптимального угла опережения зажигания в зависимости от режима работы двигателя.

Угол опережения зажигания определяется по углу поворота коленчатого вала двигателя от момента возникновения искры до момента достижения поршнем верхней мертвой точки.

Если угол опережения зажигания больше оптимального, то зажигание раннее. Давление в камере сгорания при этом достигает максимума до достижения поршнем верхней мертвой точки и оказывает противодействующее воздействие на поршень. Раннее зажигание может явиться причиной возникновения детонации. Если угол опережения зажигания меньше оптимального, зажигание позднее, в этом случае двигатель перегревается.

На начальную фазу сгорания влияет энергия и длительность искрового разряда в свече. В современных системах энергия разряда достигает 50 МДж, а его длительность 1 - 2,5 мс.

По способу накопления энергии различаются системы с накоплением энергии в индуктивности и в емкости (рис. 6.1). В обоих случаях для получения импульса высокого напряжения используется катушка зажигания, представляющая собой высоковольтный трансформатор, содержащий две обмотки: первичную с малым числом витков и омическим сопротивлением в доли и единицы ома и вторичную с большим числом витков и омическим сопротивлением в единицы и десятки к0м. Коэффициент трансформации катушки лежит в пределах 50 -150. Значительное количество энергии, которое требуется для воспламенения рабочей смеси, накопить в конденсаторе приемлемых размеров при достаточно низком напряжении бортовой сети невозможно. Поэтому система по рис. 8.1,б оборудована высоковольтным преобразователем напряжения. Такое усложнение схемы не дает существенных преимуществ, поэтому системы с накоплением энергии в емкости на автомобилях практически не применяются. Принцип работы схемы, изображенной на рис. 8.1, а, характерен для всех систем зажигания, устанавливаемых на автомобилях.

Выключатель зажигания S1 включает систему в сеть питания. В некоторых системах роль выключателя S1 играют контакты реле, управляемого выключателем зажигания. При вращении вала двигателя происходит замыкание контактов прерывательного механизма S2, и ток начинает нарастать в первичной цепи катушки зажигания по экспоненте, как это показано на рис. 8.2, а.

В момент, необходимый для подачи искрового импульса на зажигание, прерыватель S2 разрывает свои контакты, после чего возникает колебательный процесс, связанный с обменом энергией между магнитным полем катушки и электрическим полем в емкостях С1 и С2. Амплитуда колебаний напряжения, приложенного к электродам свечи U2, убывает по экспоненте, как показано на рис. 8.2 пунктиром. Однако интерес представляет лишь первая полуволна напряжения, т.к. если ее максимальное значение U2m превышает напряжение пробоя искрового промежутка Uп, возникает необходимая для зажигания искра. Величина U2m зависит от коэффициента трансформации катушки зажигания Кт = W2/W1 (W2 и W1 соответственно число витков вторичной и первичной обмоток катушки), величины тока первичной обмотки в момент разрыва l1p, а также индуктивности L1 и емкости C1 первичной и C2 вторичной цепей

Коэффициент Kп учитывает потерю энергии в активных сопротивлениях первичной R1 и вторичной R2 цепей, в сопротивлении нагара Rш, шунтирующего искровой промежуток, а также в сердечнике катушки при его перемагничивании. Обычно Кп лежит в пределах 0,7 - 0,8. Влияние нагара на свечах на искрообразование значительно снижается с увеличением скорости нарастания вторичного напряжения. В современных системах эта скорость лежит в пределах 200 - 700 В/мкс.

После пробоя искрового промежутка вторичное напряжение резко уменьшается (см. рис.8.2). При этом в искровом промежутке сначала искра имеет емкостную фазу, связанную с разрядом емкостей на промежуток, а затем индуктивную, во время которой в искре выделяется энергия, накопленная в магнитном поле катушки. Емкостная составляющая искры обычно кратковременна, очень ярка, имеет голубоватое свечение. Сила тока в искре велика даже при малом количестве протекающего в ней электричества. Индуктивная составляющая отличается значительной продолжительностью, небольшой силой тока, большим количеством электричества и неярким красноватым свечением. Осциллограмма вторичного напряжения, соответствующая рис. 8.2, является признаком нормальной работы системы зажигания. О нормальной работе свидетельствует и вид искры между электродами свечи. В исправной системе она имеет яркое ядро, окруженное пламенем красноватого цвета.

 

Распределение зажигания по цилиндрам может производиться как на высоковольтной, так и на низковольтной стороне (рис. 8.3). При низковольтном распределении каждая катушка зажигания обычно обслуживает один, два либо четыре цилиндра. В первом случае катушка имеет два высоковольтных вывода (двухвыводная катушка), во втором четыре (четырехвыводная). Импульсы напряжения на обоих выводах двухвыводной катушки появляются одновременно, но один из них подается в цилиндр в такте сжатия и производит воспламенение рабочей смеси, в другом цилиндре в это время избыточное давление отсутствует и выделенная в искре энергия расходуется вхолостую. Четырехвыводная катушка снабжена первичной обмоткой, состоящей из двух секций, работающих попеременно. Высоковольтные диоды обеспечивают разделение цепей, так как высоковольтные импульсы такой системы разнополярны. Это является недостатком системы с четырехвыводной катушкой, поскольку, в зависимости от полярности импульса, пробивное напряжение на свече может отличаться на 1,5 - 2 кВ. Катушка может обслуживать и один цилиндр, в этом случае она обычно располагается на свече.

В настоящее время наиболее распространено высоковольтное распределение зажигания, однако развитие электроники позволяет перейти, вернее вернуться, к низковольтному распределению, как, например, на первых автомобилях фирмы “Форд”, где имелись 4 прерывателя и 4 катушки зажигания.

При одинаковом принципе работы системы зажигания по своим конструктивным и схемным выполнениям делятся на контактную систему (иначе ее называют классической), контактно-транзисторную и бесконтактную электронные системы зажигания.

24. Регулирование момента искрообразования. Способы и особенности.

На скорости 40…50 км/ч резко нажмите на педаль управления дроссельными заслонками карбюратора (далее для краткости – педаль газа). В этот момент должны появиться на непродолжительное время (1…3 с) легкие детонационные стуки. Если стуки будут слышны более длительное время, то это говорит о раннем моменте искрообразования, если же они вообще не появятся, то, значит, установлен поздний момент искрообразования. Корректировку момента проводят октан-корректором (там, где его нет, корректировку придется проводить, изменяя установку момента искрообразования поворотом корпуса распределителя). При раннем моменте искрообразования (сильная детонация) гайку октан-корректора поверните по часовой стрелке (в сторону “-”), а при позднем моменте (отсутствие детонации) – против часовой стрелки (в сторону “”). После корректировки снова проверьте оптимальность момента искрообразования при движении автомобиля.

Второй способ установки момента искрообразования-с помощью стробоскопа-позволяет делать это более точно, а заодно и проверить работу вакуумного и центробежного автоматов.

25. Датчик момента искрообразования

 

В старых двигателях использовался механический кулачок и контактная группа (прерыватель), разрывающая цепь при определенном положении вала. Это упрощало низковольтную электрическую часть системы до двух проводов — от источника питания до катушки, и от катушки до прерывателя. Недостатком этой системы была крайне низкая надёжность контактов прерывателя (возможно, самое ненадёжное место в двигателе как целом), их уязвимость для нагара и влаги.

 

Потому с развитием электроники от прерывателя отказались, заменив его бесконтактными датчиками — индуктивными, оптическими, либо наиболее распространенными датчиками Холла, основанными на эффекте изменения проводимости полупроводника в магнитном поле. Неоспоримое преимущество данных схем — отсутствие необходимости в периодическом обслуживании, — за исключением замены свечей зажигания. В таком случае, для выдачи резкого фронта/спада напряжения на катушку необходима электронная схема, делающая это на основании сигнала с датчика. Отсюда происходит название такого варианта: «электронное зажигание». Электронная схема обычно исполнена в виде единого; зачастую — неремонтопригодного узла, известного в просторечии как «коммутатор».

 

В советских/российских двигателях малого литража (лодочные, мотоциклетные) электронное зажигание применялось с 70х годов; в автомобилях — начиная с ВАЗ-2108 (1984).

 

В современных автомобилях на его смену пришли датчик положения коленвала и датчик фаз. Точный момент искрообразования вычисляется вычисляется электронным блоком управления в зависимости от показаний многих иных датчиков (датчик детонации, датчик положения дроссельной заслонки и т.п.) и в зависимости от режима движения и работы двигателя.

Центробежный регулятор.

 

Устройство, изменяющее положение шторки бесконтактного датчика или кулачка контактного (а значит, и момент зажигания) в зависимости от оборотов двигателя. Состоит из грузиков (обычно - двух), которые, с увеличение оборотов двигателя, расходятся, преодолевая сопротивление пружинок, поворачивая при этом часть вала со шторкой или кулачком вперёд (увеличивая опережение зажигания при увеличении оборотов).

Вакуумный регулятор.

 

Устройство, изменяющее положение датчика относительно начального (а, значит, и момент зажигания) в зависимости от разрежения во впускном коллекторе, то есть от степени открытия дроссельных заслонок и оборотов двигателя. Обычно включает в себя шланг от узла прерывателя/датчика до карбюратора или впускного коллектора. На прерывателе разрежение воздействует на мембрану, которая, преодолевая сопротивление пружины, сдвигает датчик (контакты прерывателя) навстречу движению кулачка (шторок), то есть, увеличивая опережение зажигания при большом разрежении во впускном коллекторе (в этом случае смесь горит дольше, это режимы малых нагрузок при высоких оборотах двигателя).

 

Центробежный и вакуумный регуляторы позволяют добиться оптимального момента зажигания во всех режимах работы двигателя. В современных двигателях они уже не используются, — поскольку задача определения оптимального момента искрообразования переложена на микропроцессор (в электронном блоке управления, или контроллере), учитывающий в вычислениях также положение дросселей, обороты двигателя, сигналы датчика детонации и т. п.

Катушка зажигания (часто называется «бобина»)

 

Трансформатор, преобразующий резкий фронт/спад напряжения от прерывателя/коммутатора в высоковольтный импульс. В малогабаритных двигателях (лодочные, мотоциклетные) традиционно использовалось по одной катушке на каждый цилиндр, соединённой со свечой высоковольтным проводом. В автомобильных же двигателях традиционно использовалась одна катушка и распределитель; однако в большинстве современных двигателей используется несколько катушек зажигания, либо объединённых в едином корпусе с электронными коммутаторами (т.н. «модуль зажигания»), при этом каждая катушка обеспечивает искру в конкретных цилиндрах, либо в группах цилиндров, что позволяет отказаться от распределителя зажигания, либо отдельные катушки устанавливающиеся непосредственно на каждую свечу; при этом, катушки выполнены в виде надеваемых на свечи колпачков, конструктивно объединяющих собственно высоковольтный трансформатор и силовой ключ управления, что позволяет отказаться также и от высоковольтных проводов. Нередко —в случае большеобъемных двигателей или двигателей, работающих на обеднённых смесях,— используют двух- или многоточечный по́джиг для уменьшения фазы горения смеси или для повышения надёжности (авиадвигатели). В этом случае устанавливается либо два комплекта катушек зажигания и распределителей, либо используется схема с индивидуальными катушками (например, двигатели Honda серии LxxA). Также, в двигателях с четным числом цилиндров часто применяется схема с катушкой зажиганиия, содержащей выводы от обоих концов высоковольтной обмотки и соответственно питающей две свечи зажигания, находящихся в цилиндрах, циклы в которых сдвинуты друг относительно друга так, чтобы ненужная в данный момент искра попадала на такт выпуска или продувки. Преимущество: позволяет упростить схему зажигания; причём, в случае двухцилиндровых двигателей — кардинально.

Распределитель.

 

Высоковольтный переключатель, вращающийся вместе с распределительным валом двигателя, подключает одну катушку зажигания к нужной в данный момент свече. Обычно исполняется в одном корпусе и на одном валу с прерывателем/датчиком положения вала. Состоит из подвижного контакта (бегунка) и вымя-образной крышки, в которой смонтированы неподвижные контакты.

 

Вполне надёжен, но требует периодической чистки; также, трещины крышки часто приводят к неработоспособности двигателя, — особенно во влажную погоду. Бегунок имеет тенденцию к подгоранию.

 

В современных двигателях распределитель не используется, уступив место модулям зажигания, использующим отдельные катушки для отдельных групп свечей, или катушкам установленным непосредственно на свечи.

Высоковольтные провода.

 

От катушки к свече, или же от катушки к центру распределителя, и от свечи к окружности распределителя. Многожильный провод в слое толстой изоляции, способной выдержать разность потенциалов до 40 киловольт. Характеризуются распределённым активным сопротивлением (порядка нескольких килоом на метр), либо так называемым "нулевым сопротивлением" (порядка нескольких ом на метр). В последнее время стала применяться изоляция из силикона, как более надёжная и долговечная.

 

В некоторых современных автомобилях катушки зажигания устанавливаются непосредственно на свечи, и высоковольтные провода не используются.

Свеча зажигания

 

Ввинчиваемая в цилиндр деталь, содержащая в себе искровой промежуток внутри цилиндра и контакт для подключения провода (катушки) вне него.

 

Непосредственно поджигает смесь в цилиндре.

Магнето

 

Генератор с вращающимся постоянным магнитом, статорная катушка которого совмещена с катушкой зажигания, а сам генератор — с узлом прерывателя. Позволяет исполнение всей системы зажигания в виде блока «магнето+высоковольтный провод+свеча» без любых других проводов и узлов, в том числе — без аккумуляторной батареи. Используется в бензопилах, газонокосилках и мопедах, где не применяется замок зажигания с секретным ключом. В некоторых случаях (лодочный мотор «Вихрь») используется магнето с 2 (двумя) выносны́ми катушками зажигания.

 

26. Электронные системы зажигания. Разновидности и особенности.

В электронных, системах зажигания контактный прерыватель заменен бесконтактными датчиками. В качестве датчиков используются оптоэлектронные датчики, датчики Виганда, но наиболее часто магнитоэлектрические, датчики (МЭД) и датчики Холла (ДХ).

МЭД бывают генераторного (рис. 8.8, a) и коммутаторного (рис. 8.8, б) типов. В генераторном датчике вращается постоянный магнит, помещенный внутрь клювообразного магнитопровода. При этом в катушке, надетой на свой клювообразный магнитопровод, наводится ЭДС. В МЭД коммутаторного типа вращается зубчатый ротор из магнитомягкого материала, а магнит неподвижен. ЭДС в катушке наводится за счет изменения величины ее магнитного потока при совпадении и расхождений выступов статора и ротора. Недостатком МЭД является зависимость величины выходного сигнала от частоты вращения, а также значительная величина индуктивности катушки, вызывающая запаздывание в прохождении сигнала.

От этих недостатков избавлен датчик Холла. Особенность состоит в том, что ЭДС, снимаемая с двух граней его чувствительного элемента, пропорциональна произведению силы тока, подводимого к

двум другим граням на величину индукции магнитного поля, пронизывающего датчик. В реальных системах магнитное поле создается неподвижным магнитом, который отделен от датчика магнитомягким экраном с прорезями (рис. 8.8, в). Если между магнитом и чувствительным элементом попадает стальной выступ, магнитный поток им шунтируется и на датчик не попадает, ЭДС на выходе чувствительного элемента отсутствует. Прорезь беспрепятственно пропускает магнитный поток, и на выходе элемента появляется ЭДС. Обычно датчик Холла совмещают с микросхемой, стабилизирующей ток его питания и усиливающей выходной сигнал. В реальном датчике эта схема инвертирует сигнал, т.е. напряжение на его выходе появляется, когда выступ экрана проходит мимо чувствительного элемента.

Наиболее простой в схемном и функциональном исполнении является бесконтактная система зажигания с нерегулируемым временем накопления энергии.

27. Катушки, распределители, электронные коммутаторы зажигания.

Катушка зажигания

В настоящее время применяются два вида катушек - с разомкнутым и замкнутым магнитопроводом. Они могут выполняться по трансформаторной и автотрансформаторной схемам соединения обмоток. В автотрансформаторной схеме уменьшается число выводов и в создании высокого напряжения участвует и первичная катушка, включенная последовательно со вторичной. Трансформаторная связь обычно применяется в катушках электронных систем зажигания во избежание опасных воздействий всплесков напряжения при разряде на электронные элементы.

Распределители зажигания.

Распределители зажигания управляют моментом искрообразования и распределением искры по цилиндрам. В зависимости от того, выполнен ли механизм искрообразования контактным или бесконтактным, распределители делятся на прерыватели-распределители и датчики-распределители. Прерыватели-распределители имеют устоявшуюся конструкцию и отличаются, в основном, элементами подсоединения к двигателю и числом выводов, зависящим от числа цилиндров двигателя. Они объединяют в один узел контактный прерыватель тока в первичной цепи катушки зажигания, центробежный и вакуумный регуляторы угла опережения зажигания и высоковольтный распределитель. Датчики-распределители отличаются в основном тем, что у них контактный прерыватель замещен бесконтактным датчиком {микропереключателем). В бесконтактном датчике магнитоэлектрического типа число пар полюсов соответствует числу цилиндров двигателя, в датчике Холла этому числу соответствует число прорезей вращающегося магнитного экрана. Центробежный регулятор угла опережения зажигания в магнитоэлектрическом датчике поворачивает втулку с расположенным на ней ротором датчика, в датчике Холла поворачивается муфта с закрепленным на ней магнитным экраном (шторкой). Вакуумные автоматы поворачивают пластину крепления микропереключателя. Октан-корректор имеет шкалу со знаками “+” и “-” для увеличения и уменьшения угла опережения и риски, соответствующие изменению угла опережения зажигания. В последних конструкциях датчиков-распределителей, например, переднеприводных автомобилей ВАЗ, с целью повышения точности установки момента искрообразования привод распределителя осуществляется непосредственно от распределительного вала двигателя, при этом распределитель крепится на головку блока цилиндров двигателя.

28. Электронные системы управления топливоподачей. Назначение, применение, разновидности.

Электронные системы управления топливоподачей дизелей используют для снижения токсичности и дымности отработавших газов, акустических излучений, а также для стабилизации работы лвигателя на холостом ходу. Они выполняют следующие функции:
количественное управление топливоподачей;
управление моментом начала впрыска;
управление частотой вращения коленчатого вала на холостом ходу и защитой двигателя от превышения допустимой частоты;
управление свечами накаливания.
Как и для карбюраторных двигателей, используют три типа электронных систем управления дизелями: аналоговые, цифровые и микропроцессорные. Из-за некоторых специфических недостатков аналоговые и цифровые системы управления распространены в основном на стационарных двигателях, работающих в установив-шихся режимах.
Автомобильные двигатели, которые работают в широком диапазоне скоростных и нагрузочных (неустановившихся) режимов, требуют комплексного подхода к динамическому процессу управления на основе большого количества информации о режимных параметрах и корректирующих операциях, обеспечивающих защиту от аварийных режимов. Под режимными параметрами понимают информацию о частоте вращения коленчатого вала двигателя, положении рейки топливного насоса высокого давления, положении педали топливоподачи.
Микропроцессор на основе информации о режимных параметрах формирует предварительные коды для исполнительных механизмов, которыми задается режим работы двигателя. Повышение точности регулирования достигается путем корректировки управляющих воздействий на основе информации об условиях работы двигателя, т. е. о температуре топлива и всасываемого воздуха при атмосферном давлении. Корректировка проводится для дозы впрыскиваемого топлива. Сигналы датчиков температуры и давления масла, температуры охлаждающей жидкости используются для оценки условий пуска двигателя и предупреждения аварийных режимов.
Микропроцессорная система управления дизелем М (рис. 48.5), обеспечивающая удовлетворительное воспроизведение режимов работы, близких к оптимальным, представляет собой программно следящую систему автоматического регулирования с несколькими отрицательными обратными связями. Качественное обеспечение переходных процессов на неустановившихся режимах, связанное с технико-экономическими показателями работы двигателя, зависит от характеристик топливоподачи.
Блок расчета необходимого положения рейки топливного насоса содержит (как и в электронной системе управления карбюраторным двигателем) запоминающее устройство, в которое заносятся данные регулировочной характеристики дизеля по углу опережения впрыска топлива (см. рис. 45.10).
Это позволяет изменять угол опережения впрыска в зависимости от нагрузки и частоты вращения коленчатого вала двигателя.
Информация основных датчиков, участвующих в формировании количественных и временных характеристик топливоподачи, используется дополнительно в подсистеме защиты двигателя, т. е. когда какой-либо параметр рабочего процесса достигает предельно допустимого значения. Например, при достижении температуры двигателя 105 °С снижается частота вращения коленчатого вала и водитель оповещается звуковым и световым сигналами. При падении давления масла в системе смазывания двигатель останавливается.





Поделиться с друзьями:


Дата добавления: 2017-02-11; Мы поможем в написании ваших работ!; просмотров: 446 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2280 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.