Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Структурированность (рекурсивная структурированность) знаний.




Лекция 4. Данные и знания

Всегда вызывает интерес соотношение между данными и зна­ниями, в особенности представления (способы формализации) тех и других, модели представления данных и знаний, поскольку дан­ные и знания — это форма представления информации в ЭВМ (рис. 1.17).
Информация, с которой имеет дело ЭВМ, разделяется на проце­дурную и декларативную.

Процедурная информация овеществлена в программах, которые выполняются в процессе решения задач, дек­ларативная — в данных, с которыми эти программы работают (рис. 1.18).

Стандартной формой представления информации в ЭВМ является машинное слово, состоящее из определенного для данного типа ЭВМ числа двоичных разрядов — битов. В ряде случаев машинные слова разбиваются на группы по восемь двоичных разрядов, которые называются байтами.

Одинаковое число разрядов в машинных словах для команд и данных позволяет рассматривать их в ЭВМ в качестве одинаковых информационных единиц (ИЕ) и выполнять операции над командами, как над дан­ными. Содержимое памяти образует информационную базу (рис. 1.19).


Для удобства сравнения данных и знаний можно выделить ос­новные формы (уровни) существования знаний и данных. Как представлено в табл. 1.2, у данных и знаний много общего. Однако знания имеют более сложную структуру, и переход от данных к знаниям является закономерным следствием развития и усложне­ния информационных структур, обрабатываемых на ЭВМ.

Данные

Параллельно с развитием структуры ЭВМ происходило разви­тие информационных структур для представления данных.

Появи­лись способы описания данных в виде: векторов, матриц, списоч­ных структур, иерархических структур, структур, создаваемых про­граммистом (абстрактных типов данных).

В настоящее время в языках программирования высокого уров­ня используются абстрактные типы данных, структура которых создается программистом. Появление баз данных (БД) знаменова­ло собой еще один шаг по пути организации работы с декларатив­ной информацией.

По мере развития исследований в области ИнС возникла кон­цепция знаний, которая объединила в себе многие черты процедур­ной и декларативной информации.
Сегодня термины «база данных», «информационная интеллек­туальная система», как и многие другие термины информатики, стали широко употребительными. Причина этого — всеобщее осоз­нание (социальная потребность) необходимости интенсивного вне­дрения ЭВМ и других средств автоматизированной обработки ин­формации в самые различные области деятельности современного общества. Начало последней четверти нынешнего столетия по пра­ву можно назвать началом эры новой информационной техноло­гии — технологии, поддерживаемой автоматизированными инфор­мационными ИнС.

Актуальность проблематики ИнС и лежащих в их основе БД определяется не только социальной потребностью, но и научно-технической возможностью решения классов задач, связанных с удовлетворением информационных нужд различных категорий пользователей (включая как человека, так и программ­но-управляемое устройство). Такая возможность возникла (при­мерно на рубеже 70-х годов) благодаря значительным достижениям в области технического и программного обеспечения вычислитель­ных систем.

База данных как естественнонаучное понятие характеризуется двумя основными аспектами: информационным и манипуляцион-ным. Первый аспект отражает такую структуризацию данных, ко­торая является наиболее подходящей для обеспечения информа­ционных потребностей, возникающих в предметной области (ПО). С каждой ПО ассоциируется совокупность «информацион­ных объектов», связей между ними (например, «поставщики», «номенклатура выпускаемых изделий», «потребители» — катего­рии информационных объектов, а «поставки» — тип отношений, имеющих место между этими объектами), а также задач их обра­ботки. Манипуляционный аспект БД касается смысла тех дейст­вий над структурами данных, с помощью которых осуществляют­ся выборка из них различных компонентов, добавление новых, удаление и обновление устаревших компонентов структур данных, а также их преобразования.
Под системой управления базами данных (СУБД) понимается комплекс средств (языковых, программных и, возможно, аппарат­ных), поддерживающих определенный тип БД. Главное назначе­ние СУБД, с точки зрения пользователей, состоит в обеспечении их инструментарием, позволяющим оперировать данными в абст­рактных терминах (именах и/или характеристиках информацион­ных объектов), не связанных со способами хранения данных в па­мяти ЭВМ. Следует заметить, что средств СУБД может, вообще говоря, не хватать для решения всех задач той или иной ПО. По­этому на практике приходится адаптировать (дополнять, настраи­вать) средства СУБД для обеспечения требуемых возможностей. Системы, получаемые путем адаптации СУБД к данной ПО, относятся к ИнС.

Жизнеспособная ИнС, т. е. способная поддерживать модель БД с учетом динамики развития ПО, по необходимости должна в каче­стве своего ядра содержать СУБД. Выработанная на сегодняшний день методология проектирования ИнС (с точки зрения БД) включает четыре основные задачи:

1) системный анализ ПО, спецификацию информационных объектов и связей между ними (в результате вырабатывается так называемая концептуальная, или семантическая, модель ПО);

2) построение модели БД, обеспечивающей адекватное пред­ставление концептуальной модели ПО;

3) разработку СУБД, поддерживающей выбранную модель БД;

4) функциональное расширение (посредством некоторой систе­мы программирования) СУБД с целью обеспечения возможностей решения требуемого класса задач, т.е. задач обработки данных, ха­рактерных для данной ПО.

Знания

Рассмотрим общую совокупность качественных свойств для знаний (специфических признаков знаний) и перечислим ряд осо­бенностей, присущих этой форме представления информации в ЭВМ и позволяющих охарактеризовать сам термин «знания».

Прежде всего знания имеют более сложную структуру, чем дан­ные (метаданные). При этом знания задаются как экстенсионально (т.е. через набор конкретных фактов, соответствующих данному понятию и касающихся предметной области), так и интенсиональ­но (т.е. через свойства, соответствующие данному понятию, и схему снязсй между атрибутами).

С учетом сказанного перечислим свойства.

Внутренняя интерпретируемость знаний.

Каждая информацион­ная единица (ИЕ) должна иметь уникальное имя, по которому ИС находит ее, а также отвечает на запросы, в которых это имя упомя­нуто. Когда данные, хранящиеся в памяти, были лишены имен, то отсутствовала возможность их идентификации системой. Данные могла идентифицировать лишь программа.
Если, например, в память ЭВМ нужно было записать сведения о студентах вуза, представленные в табл. 1.10, то без внутренней интерпретации в память ЭВМ была бы записана совокупность из четырех машинных слов, соответствующих строкам этой таблицы.
При этом информация о том, какими группами двоичных разрядов в этих машинных словах закодированы сведения о студентах, у системы отсутствует. Они известны лишь программисту.
При переходе к знаниям в память ЭВМ вводится информация о некоторой протоструктуре информационных единиц. В рассматри­ваемом примере она представляет собой специальное машинное слово, в котором указано, в каких разрядах хранятся сведения о фамилиях, годах рождения, специальностях и курсе. При этом должны быть заданы специальные словари, в которых перечислены имеющиеся в памяти системы фамилии, года рождения, название специальностей и курса. Все эти атрибуты могут играть роль имен для тех машинных слов, которые соответствуют строчкам таблицы. По ним можно осуществлять поиск нужной информации. Каждая строка таблицы будет экземпляром протоструктуры. В настоящее время СУБД обеспечивают реализацию внутренней интерпретируе­мости всех ИЕ, хранимых в базе данных.

Структурированность (рекурсивная структурированность) знаний.

Информационные единицы должны обладать гибкой структурой. Для них должен выполняться «принцип матрешки», т.е. рекурсив­ная вложимость одних ИЕ в другие. Каждая ИЕ может быть вклю­чена в состав любой другой, и из каждой ИЕ можно выделить не­которые составляющие ее ИЕ.

Другими словами, должна существо­вать возможность произвольного установления между отдельными ИЕ отношений типа «часть — целое», «род— вид» или «эле­мент — класс».





Поделиться с друзьями:


Дата добавления: 2017-02-11; Мы поможем в написании ваших работ!; просмотров: 744 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2186 - | 2137 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.