Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Дыхательная электронтранспортная цепь и окислительное фосфорилирование.

ДЫХАНИЕ РАСТЕНИЙ

 

Образующиеся в ходе фотосинтеза сахара и другие органические соединения используются клетками растительного организма в качестве питательных веществ. На клеточном уровне этот процесс называется дыханием.

Клеточное дыхание – это окислительный, с участием О2 распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.

Суммарное уравнение дыхания:

 

С6Н12О6 + О2 6СО2 + 6Н2О + 2875 кДж/моль

 

Значение дыхания не ограничивается тем, что это процесс поставляющий энергию. Дыхание, подобно фотосинтезу, сложный окислительно-восстановительный процесс, идущий через ряд этапов. На его промежуточных стадиях образуются органические соединения (органические кислоты и пентозы), которые затем используются в различных метаболических реакциях. Кроме того, вода, образующаяся при дыхании, в крайних условиях обезвоживания может быть использована растением и предохранить его от гибели. Таким образом, дыхание – центральный метаболический процесс, переплетающийся многочисленными связями с другими процессами обмена.

 

Ферменты дыхания

С химической точки зрения дыхание – это медленное окисление, связанное с отнятием от субстрата электронов и протонов, а кислород играет роль их конечного акцептора, что отличает процесс дыхания от брожения (анаэробный процесс).

Окисление дыхательного субстрата осуществляется с участием ферментов оксидоредуктаз (I класс)

 

ДН2 Е АН2 Д – донор электронов и протонов

А - акцептор

Д ЕН2 А Е - энзим

 

Существует 3 группы оксидоредуктаз:

1. Анаэробные дегидрогеназы (передают электроны различным акцепторам, но не кислороду). В качестве кофермента – NAD+, NADP+. Например: лактатдегидрогеназа, малатдегидрогеназа.

2. Аэробные дегидрогеназы (передают энергию различным акцепторам, в том числе и кислороду). В качестве простетической группы содержат рибофлавин (витамин В2). Различают два кофермента этой группы: FMN или жёлтый дыхательный фермент Варбурга и FAD.

Пример: сукцинатдегидрогеназа. Доноры электронов для аэробных дегидрогеназ – анаэробные дегидрогеназы, а акцепторы – хиноны, цитохромы, кислород.

  1. Оксидазы (передают электроны только кислороду). При этом образуются вода, перекись водорода и супероксидный анион кислорода – О2-.

4е Н2О (цитохромоксидаза, полифенолоксидаза)

АН2

+ 2е Н2О2 (оксидазы аминокислот)

О2

О2- + Н+ (ферменты типа ксантиноксидазы)

 

Н2О2 и О2 весьма токсичные, поэтому в клетках быстро трансформируются в воду и кислород.

Среди оксидаз очень важную роль играют железосодержащие ферменты и переносчики, относящиеся к цитохромной системе. В неё входят цитохромы и цитохромоксидаза. Именно они передают электроны от флавопротеинов на кислород.

Все компоненты цитохромной системы содержат железопорфириновую простетическую группу; при переносе электронов железо обратимо восстанавливается и окисляется, приобретая или отдавая электроны и изменяя таким образом свою валентность.

Другие растительные оксидазы (полифенолоксидаза, аскорбатоксидаза) являются медьсодержащими и немитохондриальными (окисляют соответственно фенолы и аскорбиновую кислоту).

К оксидазам относятся также пероксидазы (используют в качестве окислителя перекись водорода) и каталаза (расщепляет перекись водорода на воду и кислород). Простетической группой каталазы и пероксидазы служит гем.

 

Субстраты дыхания

В первую очередь растения используют в качестве дыхательного материала углеводы. При этом дыхательный коэффициент (молярное отношение СО2, выделившегося в процессе дыхания, к поглощённому за этот же промежуток времени О2) равен единице ().

При недостатке углеводов могут быть использованы и другие субстраты. Особенно ярко это проявляется на проростках, развивающихся из семян, в которых в качестве запасного питательного вещества содержаться белки или жиры. Так как эти соединения по сравнению с сахарами являются более восстановленными, для их окисления требуется больше кислорода и дыхательный коэффициент становится меньше единицы. При этом жиры предварительно расщепляются до глицерина и жирных кислот, которые могут быть превращены в углеводы через глиоксилатный цикл. Использованию же белков в качестве субстрата дыхания предшествует их расщепление до аминокислот.

 

ПУТИ ДЫХАТЕЛЬНОГО ОБМЕНА

Существует два основных пути превращения дыхательного субстрата или окисления углеводов:

1. Дихотомический: гликолиз + цикл Кребса;

2. Апотомический: пентозофосфатный путь

Относительная роль этих путей дыхания может меняться в зависимости от типа растений, возраста, фазы развития, а также в зависимости от условий внешней среды (например, дыхание осуществляется в диапазоне температур -50….+50 0С).

Рассмотрим оба пути:

 

Гликолиз – процесс анаэробного распада глюкозы, идущий с освобождением энергии, конечным продуктом которого является пировиноградная кислота (ПВК).

Реакции гликолиза протекают в растворимой части цитоплазмы (цитозоле), где гликолитические ферменты организованы в мультиэнзимные комплексы с участием актиновых филаментов цитоскелета, и в хлоропластах.

Цепь реакций, составляющих путь гликолиза можно разбить на 3 этапа:

 

1.
Подготовительный – фосфорилирование гексозы и её расщепление на 2 фосфотриозы (затрачивается 2 АТФ).

2. Первое субстратное фосфорилирование (синтез 2 АТФ за счёт окисления 2 молекул фосфоглицеринового альдегида (ФГА) до 2 молекул фосфоглицериновой кислоты (ФГК), при этом также образуется 2 NADH H+).

3. Второе субстратное фосфорилирование( синтез 2 АТФ за счёт окисления 2 молекул ФГК до ПВК).

 

Таким образом, суммарное уравнение гликолиза выглядит следующим образом:

 

 

Функции гликолиза в клетке:

1. Связь между дыхательными субстратами и циклом Кребса.

2. Источник АТР и NADH H+.

3. Некоторые его интермедиаты используются для синтетических процессов в клетке (например, ФЕП необходима для образования фенольных соединений и лигнина).

4. В хлоропластах запасённый крахмал метаболизируется в триозы, которые затем транспортируются из него.

 

Цикл Кребса. В анаэробных условиях ПВК подвергается различным типам брожения. В присутствии же достаточного количества кислорода пируват полностью окисляется до углекислого газа и воды в цикле Кребса. Все участники этого процесса локализованы в матриксе или во внутренней мембране митохондрий.

Первым этапом окислительного расщепления ПВК является процесс образования активного ацетила в ходе окислительного декарбоксилирования при участии пируватдегидрогеназного мультиферментного комплекса (3 фермента и 5 коферментов).

В результате образуется ацетил коэнзим А:

(ацетил – Со А)

Дальнейшее окисление ацетил - Со А осуществляется в ходе циклического процесса (цикла Кребса) начиная со взаимодействия со щавелевоуксусной кислотой (ЩУК):

В результате одного оборота цикла:

 

 

Сумарне рівняння аеробного окислення:

 

Сумарне рівняння гліколізу і циклу Кребса:

 

 

Глиоксилатный цикл (в животных клетках отсутствует). Можно рассматривать как модификацию цикла Кребса. Он активно функционирует в прорастающих семенах масличных растений, где запасные жиры превращаются в сахара (глюконеогенез). Локализован не в митохондриях, а в специализированных микротельцах – глиоксисомах.

В отличие от цикла Кребса, в каждом обороте участвует не одна, а две молекулы ацетил-СоА А (образуется при β-окислении жирных кислот)и используется для синтеза янтарной кислоты, которая выходит из глиоксисом, превращается в ЩУК и участвует в глюконеогенезе (обращённом гликолизе).

 

 
 

 

Пентозофосфатный путь окисления (ПФП, пентозный шунт). Окисление глюкозы по этому пути связано с отщеплением от глюкозы первого атома углерода в виде СО2.

Протекает этот процесс в растворимой части цитоплазмы клеток и в хлоропластах. ПФП дыхания особенно активен в тех клетках и тканях растений, в которых интенсивно идут синтетические процессы, такие, как синтез липидных компонентов мембран, нуклеиновых кислот, клеточных стенок, фенольных соединений.

В ПФП выделяют 2 этапа:

1) окисление глюкозы до рибулозо-5-фосфата с образованием 2 NADPH*H+;

2) рекомбинация сахаров для регенерации исходного субстрата при участии ферментов транскетолаз, трансальдолаз и изомераз.

5 = 5С6

Суммарное уравнение ПФП выглядит таким образом:

6Н12О6 = 5С6Н12О6 + 6СО2 + 12 NADPH*H+

Основное значение ПФП не энергетическое, а пластическое:

1 - NADPH*H+, образующийся не в митохондриях, а в цитоплазме, используются главным образом в различных синтетических процессах (так как в отличие от NAD+, который присутствует в клетках в основном в более устойчивой окисленной форме, NADPH*H+ - в восстановленной).

2 – В ходе ПФП синтезируются пентозы, входящие в состав нуклеиновых кислот и нуклеотидов (ATP,GTP,UTP, NAD,FAD,коэнзим А тоже являются нуклеотидами, в состав которых входит рибоза).

3 – Углеводы С3 – С7 необходимы для синтеза различных веществ. Например, из эритрозы синтезируется шикимовая кислота – предшественник многих ароматических соединений, таких как аминокислоты, витамины, дубильные и ростовые вещества, лигнин клеточных стенок и др.

4 – Компоненты ПФП принимают участие в темновой фиксации СО2. Только 2 из 15 реакций цикла Кальвина специфичны для фотосинтеза, остальные участвуют в ПФП.

5 – Триозы С3 из ПФП могут превращаться в 3-ФГК и участвовать в гликолизе.

 
 

Активность ПФП в норме в общем дыхательном обмене составляет 10-40%. Активность увеличивается при неблагоприятных условиях: засухе, калийном голодании, инфекции, затенении, засолении, старении.

 

Дыхательная электронтранспортная цепь и окислительное фосфорилирование.

 

Цикл Кребса, глиоксилатный и ПФП функционируют только в условиях достаточного количества О2. В то же время О2 непосредственно не участвует в реакциях этих циклов. Он необходим для заключительного этапа дыхательного процесса, связанного с окислением накопленных восстановленных коферментов NADH*H+ и FADH2 в дыхательной электронтранспортной цепи (ЭТЦ) митохондрий. С переносом электронов по ЭТЦ сопряжен и синтез АТФ.

Дыхательная ЭТЦ, локализованная во внутренней мембране митохондрий состоит из четырех мультиэнзимных комплексов, в состав которых входят (по мере увеличения окислительно-восстановительного потенциала):

FMN – железосерные белки FeS – убихинон Q – цитохромы (b556,b560,1c,c,a,a3) - О2. При этом электроны от NADH*H+ поступают на FMN, а от FADH2 – непосредственно на убихинон.

Из матрикса митохондрий при транспорте каждой пары электронов от NADH*H+ к О2 в трех участках ЭТЦ через мембрану наружу (в межмембранное пространство) переносятся по крайней мере шесть протонов Н+, при окислении FADH2 – таких участков лишь два.

В результате на мембране создается электрохимический потенциал ионов Н+, включающий химический или осмотический градиент (ΔрН) и электрический градиент. Согласно хемиоосмотичской теории Митчелла такой электрохимический трансмембранный потенциал ионов Н+ и является источником энергии для синтеза АТФ за счет транспорта протонов через протонный канал мембранной АТФ-азы.

 
 

АТФ-азный комплекс состоит из фактора сопряжения F1 (белок из 9 субъединиц) и фактора Fо, который перешнуровывет мембрану и служит каналом для транспорта ионов Н+.

Процесс фосфорилирования АДФ с образованием АТФ, сопряженный с переносом электронов при ЭТЦ митохондрий, называется окислительным фосфорилированием.

При окислении NADH*H+ коэффициент фосфорилирования =3, FADH2= 2, то есть энергии хватает на синтез соответственно 3 и 2 молекул АТФ.

Таким образом можно рассчитать общий энергетический выход (в молекулах АЬФ) окисления глюкозы:

С6Н12О6 = 6СО2 + 4 АТФ + 10 NADH*H+ + 2 FADH2.

При этом 10 NADH*H+ = 30 АТФ, а 2 FADH2 = 4 АТФ. В итоге имеем 4 +30+4 =38 АТФ = 380 ккал/моль = 1591 кДж/моль энергии.

 



<== предыдущая лекция | следующая лекция ==>
Доброкачественные опухоли яичников. | Минеральное питание растений
Поделиться с друзьями:


Дата добавления: 2017-01-28; Мы поможем в написании ваших работ!; просмотров: 2001 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2268 - | 2092 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.