В состав этой подгруппы входят элементы побочной подгруппы седьмой группы: марганец, технеций и рений. Отношение между ними и элементами главной
седьмой группы – галогенами - приблизительно такое же, как и между элементами главной и побочной подгрупп шестой группы. Имея в наружном электронном слое атома всего два электрона, марганец и его аналоги не способны присоединять электроны и, в отличие от галогенов, соединений с водородом не образуют. Однако высшие кислородные соединения этих элементов до некоторой степени сходны с соответствующими соединениями галогенов, так как в образовании связей с кислородом у них, как и у галогенов, могут участвовать семь электронов. Поэтому их высшая степень окисления равна +7.
В комплексных соединениях координационные числа марганца: 4 и 6, а технеция и рения: 7,8,9.
Из элементов подгруппы марганца наибольшее практическое значение имеет сам марганец. Рений - редкий элемент, однако, благодаря ряду ценных свойств, находит применение в технике. Технеций в земной коре не встречается. Он был получен искусственно, бомбардировкой ядер атомов молибдена ядрами тяжелого изотопа водорода дейтронами. Технеций был первым элементом, полученным искусственным, техническим путем, что и послужило основанием для его названия.
Марганец (Manganum).
Марганец принадлежит к довольно распространенным элементам, составляя 0.1% (масс.) земной коры. Из соединений, содержащих марганец, наиболее часто встречается минерал пиролюзит, представляющий собой диоксид марганца MnO2. Большое значение имеют также минералы гаусманит Mn3O4 и браунит Mn2O3.
Марганец получают либо электролизом раствора MnSO4, либо восстановлением из его оксидов кремнием в электрических печах. Второй (силикотермический) метод более экономичен, но дает менее чистый продукт. При электролитическом методе руду восстанавливают до соединений марганца со степенью окисленности +2, а затем растворяют в смеси серной кислоты с сульфатом аммония. Получающийся раствор подвергают электролизу. Снятые с катодов осадки металла переплавляют в слитки.
Марганец серебристо-белый твердый хрупкий металл. Его плотность 7,44 г/см3, температура плавления 1245°C. Известны четыре кристаллические модификации марганца, каждая из которых термодинамически устойчива в определенном интервале температур. Ниже 707°C устойчив а-марганец, имеющий сложную структуру в его элементарную ячейку входят 58 атомов. Сложность структуры марганца при температурах ниже 707°C обусловливает его хрупкость.
В ряду напряжений марганец находится между алюминием и цинком: стандартный электродный потенциал системы Mn2+/Mn равен 1,18 В. На воздухе марганец покрывается тонкой оксидной пленкой, предохраняющей его от дальнейшего окисления даже при нагревании. Но в мелкораздробленном состоянии марганец окисляется довольно легко. Вода при комнатной температуре действует на марганец очень медленно, при нагревании быстрее. Он растворяется в разбавленных соляной и азотной кислотах, а также в горячей концентрированной серной кислоте (в холодной H2SO4 он практически нерастворим); при этом образуются катионы Mn2+.
Применение марганца:
Марганец применяется главным образом в производстве легированных сталей. Марганцовистая сталь, содержащая до 15% Mn, обладает высокими твердостью и прочностью. Из нее изготовляют рабочие части дробильных машин, шаровых мельниц, железнодорожные рельсы. Кроме того, марганец входит в состав ряда сплавов на основе
магния; он повышает их стойкость против коррозии. Сплав меди с марганцем и никелем манганин дает низким температурным коэффициентом электрического сопротивления.
В небольших количествах марганец вводится во многие сплавы алюминия.
Марганец образует четыре простых оксида (MnO, Mn2O3, MnO2 и Mn2O7) и смешанный оксид Mn3O4(или MnOMn2O3). Первые два оксида обладают основными свойствами, диоксид марганца MnO2 амфотерен, а высший оксид Mn2O7 является ангидридом марганцовой кислоты HMnO4. Известны также производные марганца (IV), но соответствующий оксид MnO3 не получен.
В практическом отношении наиболее важны соединения марганца (II), диоксид марганца и соли марганцовой кислоты перманганаты, в которых марганец находится в степени окисления +7.
Соединения марганца(II).
Соли марганца (II) получаются при растворении марганца в разбавленных кислотах или при действии кислот на различные природные соединения марганца. Так, из раствора, остающегося после получения хлора действием соляной кислоты на диоксид марганца, выкристаллизовывается хлорид марганца(II) MnCl2 в виде бледно-розовых кристаллов. В твердом виде соли марганца (II) обычно розового цвета, растворы же их почти бесцветны.
При действии щелочей на растворы солей марганца(II) выпадает белый осадок гидроксид марганца(II) Mn(OH)2. Осадок легко растворяется в кислотах. На воздухе он быстро темнеет, окисляясь в бурый гидроксид марганца(IV) Mn(OH)4.
Оксид марганца(II), или закись марганца, MnO получается в виде зеленого порошка при восстановлении других оксидов марганца водородом.
Соединения Марганца (IV).
Наиболее стойким соединением марганца является темно-бурый диоксид марганца MnO2; он легко образуется как при окислении низших, так и при восстановлении высших соединений марганца. Как уже указывалось, MnO2 — амфотерный оксид; однако и кислотные, и основные свойства выражены у него очень слабо.
В кислой среде диоксид марганца — довольно энергичный окислитель. В качестве окислителя его применяют при получении хлора из соляной кислоты и в сухих гальванических элементах. Соли марганца (IV), например MnCl4 и Mn(SO4)2, весьма нестойки.