Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Информационные характеристики источника непрерывных сообщений




Эпсилон - производительность непрерывного источника сообщений. Под конкретным непрерывным сообщением (t) подразумевают некоторую реализацию случайного процесса длительностью Т. Источник непрерывных сообщений характеризуется ансамблем его реализаций. Наиболее плодотворной оказалась модель непрерывного сообщения в виде эргодического случайного процесса.

Для определения производительности источника непрерывных сообщений воспользуемся подходом и результатами § 3.7, где определена ε-энтропия случайной величины.

Под ε-производительностью источника непрерывных сообщений Ηε(z) понимают минимальное количество информации, которое необходимо создать источнику в единицу времени, чтобы любую реализацию (t) можно было воспроизвести с заданной вероятностью ε.

Допустим, что (t) воспроизводится реализацией uT(t). Наблюдаемые реализации следует рассматривать, как сигналы, обладающие ограниченным, хотя возможно и достаточно широким спектром F [28, 8].

При достаточно большой длительности Т как (t), так и uT(t) могут быть представлены N-мерными (N = 2FT) векторами () и (), координатами которых являются отсчеты. Ансамбли сообщений { (t)} и воспроизводящих сигналов {uT(t)} характеризуют при этом N-мерными случайными векторами Ζ и U, составляющими которых являются соответственно случайные величины Ζ1, Z2,.., ZN и U1, U2,.., UN. Статистическое описание каждого из ансамблей задается N-мерными плотностями распределения вероятностей ρ(Ζ) = ρ() и p(U) = p(). Связь между ансамблями отражают условные плотности распределений pu(Z)= = ρ( / ) и pz(U) = p( / ), а также совместная плотность распределения вероятностей p(Z,U) = p(; ).

Распространяя формулу (4.20) на N-мерные случайные векторы Ζ и U для количества информации одного из них относительно второго, получим

где интегралы являются N-мерными.

Используем, как и ранее, среднеквадратический критерий верности (Z,U), который в рассматриваемом случае имеет вид

где p(Z,U)ZU представляет собой квадрат расстояния l(Z,U) в N-мерном евклидовом пространстве.

Количество информации, приходящееся в среднем на один отсчет дискретизованных сигналов ZT(t) и UT(t), определяется выражением

Тогда в соответствии с определением для ε-пропорциональности источника непрерывных сообщений Нε(Z) запишем

при выполнении условия

Величина ν характеризует скорость формирования источником отсчетов (ν = =2F).

Пример 4.5. Определить ε-производительность источника, формирующего со скоростью ν1 некоррелированные отсчеты стационарного нормального случайного сигнала с дисперсией σ2.

Воспользовавшись полученным в (3.65) значением ε-энтропии для нормально распределенной случайной величины, найдем

Возможности воспроизведения любого сообщения zT(t) с заданной верностью можно дать геометрическое толкование. Поскольку все реализации эргодического процесса достаточно большой длительности являются типичными и обладают практически одной и той же средней мощностью, концы соответствующих им векторов в N-мерном пространстве сообщений составляют непрерывное множество точек, равноудаленных от начала координат (гиперсферу).

Конечное подмножество воспроизводящих сигналов UT(t) размещается в центрах непересекающихся правильных сферических N-угольников (ε-областей), на которое гиперсфера разбивается без промежутков. Размеры ε-областей определены заданной верностью воспроизведения сообщений. Если источником реализуется сообщение z*T(t), конец вектора которого должен попасть в ε-область сигнала u*T(t), то воспроизводится сигнал u*T(t).

Следует отметить, что заданная верность воспроизведения будет достигнута с вероятностью, близкой к единице, только при достаточно большой длительности сообщений, когда погрешностью от замены непрерывных реализаций последовательностями отсчетов можно будет пренебречь. Для уменьшения указанной погрешности при ограниченной длительности сообщений Т необходимо увеличивать число отсчетов N. В пределе при N→∞ получим непрерывные реализации.

В вычислении ε - производительности источника и геометрическом толковании возможности воспроизведения сообщений с заданной верностью принципиально ничего не изменяется. Следует лишь учесть, что N-мерное евклидово пространство сообщений становится гильбертовым и мерой близости двух сигналов должно быть расстояние в этом пространстве.

 





Поделиться с друзьями:


Дата добавления: 2017-01-28; Мы поможем в написании ваших работ!; просмотров: 351 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2240 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.