Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Протеогликаны, ассоциированные с клетками




В процессе развития клеток появляются малые протеогликаны, получившие название протеогликанов, ассоциированных с клетками. Это семейство белков включает серглицины, синдеканы, бетаглицины, тромбомодулин, фосфатидилинозитол - заякоренные протеогликаны.

Синдеканы включают 4 типа различных белков. Они являются интегральными протеогликанами и содержат внутриклеточный, трансмембранный и внеклеточный домены. Внеклеточный домен этих белков имеет сходство с доменом протеиназ и способен открывать мембрану клетки, а также содержит и варьирующие цепи гликозаминогликанов, соединённых с синдеканом. Так, синдеканы 1 и 3 содержат гепарансульфат и хондроитинсульфат. Синдекан-1 появляется в эпителиальных клетках в процессе развития, синдекан-2 (фиброгликан) синтезируется фибробластными клетками и гепатоцитами; синдекан-3 (N-синдекан) присутствует в нервной ткани и развивающихся хрящах, а синдекан-4 (риудокан, амфигликан) - в эндотелии, эпителии, гладкомышечных клетках и фибробластах кожи. Синдеканы через внеклеточные домены связывают коллагены, фибронектин, тромбоспондин, тенасцин и фактор роста фибробластов. Внутриклеточные домены синдекана через актин связываются с цитоскелетом.

Серглицины выделены из секреторных везикул. Их состав зависит от типа клеток и клеточной дифференцировки. С коровым белком связаны цепи хондроитин- и гепарансульфата. Особенностью молекул серглицина является высокое содержание сульфатных остатков, что придаёт им устойчивость к протеолизу. Мол. масса серглицинов варьирует в больших пределах (60-750 кДа), а мол. масса корового белка практически постоянна (16-18 к Да).

Считают, что серглицины вовлечены в регуляцию ферментативной активности секреторных гранул и дифференцировку гемопоэтических клеток.

Некоторые серглицины синтезируются эндотелиальными клетками, и их синтез повышается под влиянием фактора некроза опухолей и интерлейкина 1α (ИЛ-1α). Серглицин может принимать участие в миграции лейкоцитов при воспалительных процессах. Недавно установлено, что с другими протеогликанами они участвуют в адгезии и активации лимфоидных клеток.

Протеогликаны базальных мембран

В составе базальных мембран выделена целая группа гетерогенных протеогликанов, содержащих гепарансульфат. В структуре корового белка имеются глобулярные домены, разделённые стержневыми фрагментами. Глобулярные домены обеспечивают связь этих протеогликанов с коллагеном IV типа, ламинином и другими гликопротеинами, а также с клетками, расположенными на базальной мембране.

Основным гепарансульфатсодержащим протеогликаном базальных мембран является перлекан. Полипептидная цепь, состоящая из 3500 аминокислотных остатков, связана с тремя гепарансульфатными цепями через гидроксильные группы серина в N-концевой области. Каждая полисахаридная цепь содержит до 200 мономеров. В молекуле перлекана определяется около трёх десятков глобулярных доменов, разделённых короткими стержневидными фрагментами, обеспечивающих связь между клетками и компонентами межклеточного матрикса.

Сохранение биомеханических и физиологических особенностей соединительной ткани во многом определяется поддержанием баланса между процессами биосинтеза и деградации коллагенов и протеогликанов. Распад и синтез протеогликанов регулируют: 1) гормоны - соматотропин, тироксин, инсулин; 2) цитокины - ИЛ-1, кахектины; 3) витамины группы А и С; 4) микроэлементы; 5) факторы роста.

Синтез протеогликанов

Синтез протеогликанов начинается с биосинтеза корового белка на полирибосомах. Уже в процессе трансляции белка в шероховатой эндоплазматической сети происходит связывание трисахаридов через амидные группы остатков аспарагина. В качестве донора олигосахаридов выступают долихолсвязанные олигосахариды с высоким содержанием маннозы. После присоединения N-сцепленных олигосахаридов стержневой белок подвергается ксилозилированию и фосфорилированию. УДФ-ксилозатрансфераза, осуществляющая перенос остатков ксилозы на гидроксильную группу стержневого белка, является одним из ключевых ферментов биосинтеза протеогликанов. Дальнейшие процессы образования цепей ГАГ происходят в аппарате Гольджи. Полисахаридные цепи ГАГ синтезируются путём последовательного присоединения моносахаридов, донорами которых обычно являются соответствующие УДФ - сахара. На мембранах аппарата Гольджи локализованы гликозилтрансферазы, при участии которых белковая молекула и подвергается гликозилированию.

УДФ-галактозилтрансфераза I переносит на ксилозу первый остаток галактозы, УДФ-галактозилтрансфераза II - второй остаток галактозы, а завершается формирование связующего трипептида присоединением к нему остатка глюкуроновой кислоты. Эту реакцию катализирует УДФ-глюкуронилтрансфераза I. Дальнейший синтез полисахаридной цепи осуществляется последовательным присоединением N-ацетилгалактозамина (или N-ацетилглюкозамина, галактозы) и глюкуроновой (или идуроновой) кислоты.

Модификацией цепей гликозаминогликанов является сульфатирование, то есть присоединение сульфата к С-4 и (или) к С-6 N-ацетилгалактозамина. Сульфат переносится на молекулу-акцептор с помощью специфических сульфотрансфераз. Донором сульфатной группы выступает 3'-фосфоаденозин-5'-фосфосульфат (ФАФС).

Аминосахара и гексуроновые кислоты синтезируются из глюкозы. Непосредственным же предшественником N-ацетилглюкозамина и N-ацетилгалактозамина является фруктозо-6-фосфат. Источником NН2-группы для сахаров выступает глутамин. Образовавшийся аминосахар далее ацетилируется с помощью ацетил-КоА.

В реакциях эпимеризации после включения глюкуроната в углеводную цепь из D-глюкуроновой кислоты образуется L-идуроновая кислота.

На синтез гликозаминогликанов влияют соматотропин и ретиноевая кислота, которые активируют включение сульфата в молекулы. Напротив, синтез гиалуроновой кислоты и сульфатированных гликозаминогликанов тормозят глюкокортикоиды и половые гормоны.

Распад протеогликанов

Распад протеогликанов - физиологический процесс, заключающийся в регулярном обновлении внеклеточных и внутриклеточных макромолекул. В деградации протеогликанов участвуют протеиназы и гликозидазы. Вначале коровый и связующие белки подвергаются воздействию свободных радикалов и в межклеточном матриксе гидролизуются матриксными металлопротеиназами - коллагеназой, желатиназой, стромелизином. Протеиназы расщепляют коровый белок, а гликозидазы гидролизуют цепи гликозаминогликанов и олигосахаридов. Все протеогликаны, содержащие цепи хондроитинсульфата, дерматансульфата, гепарансульфата и кератансульфата, первоначально расщепляются на фрагменты. Затем фрагменты протеогликанов захватываются бластными клетками и подвергаются внутриклеточной деградации. Эти фрагменты могут также с лимфой и кровью переноситься в печень. В гепатоцитах происходит их дальнейший гидролиз, в котором участвуют аспартильные, сериновые и другие протеиназы [1].

 

Гликопротеины

Протеогликаны отличаются от большой группы белков, которые называют гликопротеинами. Эти белки тоже содержат олигосахаридные цепи разной длины, ковалентно прикрепленные к полипептидной основе. Углеводный компонент гликопротеинов гораздо меньший по массе, чем у протеогликанов, и составляет не более 40% от общей массы.

Функции гликопротеинов:

· структурные молекулы;

· защитные (муцины, иммуноглобулины, антигены гистососместимости, комплимент, интерферон)

· транспортные молекулы для витаминов, липидов, микроэлементов;

· гормоны: тиротропин, хорионический гонадотропин;

· ферменты (нуклеазы, факторы свертывания крови)

· осуществление межклеточных контактов.

Метаболизм протеогликанов и гликопротеинов зависит от скорости их синтеза и распада. Их полипептидные цепи синтезируются на мембранносвязанных полирибосомах по матричному механизму синтеза. Полисахаридные цепи присоединяются к белку через связующую область, в состав которой чаще всего входит трисахарид галактоза-галактоза-ксилоза и соединяется с остатком серина корового белка.

Полисахаридные цепи синтезируются путем последовательного присоединения моносахаридов. Донорами моносахаридов обычно являются соответствующие нуклеотид-сахара. Реакции синтеза катализируются ферментами семейства трансфераз, обладающими абсолютной субстратной специфичностью. Эти трансферазы локализованы на мембранах аппарата Гольджи. Сюда по каналам эндоплазматической сети поступает коровый белок, к которому присоединяются моносахариды связующей области, и затем наращивается вся полисахариднакя цепь. Сульфатирование углеводной части происходит с помощью ФАФС.

На синтез гликозаминогликанов влияют глюкокортикоиды: они тормозят образование гиалуроновой кислоты и сульфатированных гликозаминогликанов. Показано также тормозящее действие половых гормонов в органах-мишенях.

Разрушение полисахаридных цепей осуществляется экзо- и эндогликозидазами и сульфатазами, к которым относят гиалуронидазу, глюкуронидазу, галактозидазу, нейраминидазу и другие лизосомальные гидролазы, обеспечивающие постепенное их расщепление до мономеров. Генетически детерминированный дефект указанных ферментов приводит к нарушению распада белково-углеводных комплексов и накоплению их в лизосомах. Развиваются мукополисахаридозы, проявляющиеся значительными нарушениями в умственном развитии, поражениями сосудов, помутнением роговицы, деформациями скелета [2].

Углеводный компонент гликопротеинов - это олигосахарид, состоящий 10 - 15 мономерных единиц. Этими мономерными единицами могут быть в основном минорные моносахариды: манноза, метилпентозы рамноза и фукоза, арабиноза, ксилоза. На конце этого олигосахарида имеется еще одно производное моносахаридов: сиаловые кислоты (ацильные производные нейраминовой кислоты). Если в крови увеличивается концентрация сиаловых кислот - значит, идет распад межклеточного матрикса. Это бывает при воспалении.

Углеводные компоненты гликопротеинов также, как и углеводные компоненты гликопротеинов обладают свойствами тканевых антигенов.

В отличие от протеогликанов белковая часть гликопротеинов составляет менее 10%, углеводный компонент представлен олигосахаридных цепью с 1015 мономеров. Мономерами гликопротеинов могут быть: манноза, фукоза, рамноза, арабиноза, ксилоза, сиаловые кислоты (ацильные производные неграминовои кислоты). Гликопротеины отличаются между собой разнообразием олигосахаридных цепей, последовательностью аминокислот в белке. Они выполняют роль матрицы, регулирующего расположения и стабилизирует фибриллы коллагена, их агрегацию с протеогликанами; образуют основу для формирования эластиновых структур, участвующих в минерализации тканей.

ГЛИКОПРОТЕИНЫ делят на 2 группы:

1. Растворимые

2. Нерастворимые.

Углеводная часть гликопротеинов очень вариабельна. Важное значение имеет последовательность моносахаридов, как и последовательность аминокислот в белковой части. Из гликопротеинов наиболее изучены растворимый фибронектин и нерастворимый ламинин.

Растворимые гликопротеины представлены особым белком - фибронектином. Молекулярная масса фибронектина - 440 кДа. Он состоит из двух полипептидных цепей, соединенных дисульфидным мостиком. Отдельная цепь состоит из 78 доменов, между которыми есть неструктурированные гибкие участки. Обязательным компонентом домена является последовательность: Арг-Гли-Асп, с помощью которой он может присоединяться к клеточным рецепторам (интегринам). На доменах расположены специфические центры для связывания различных веществ. Фибронектин присоединяется к углеводным остаткам сиалогликолипидов (ганглиозидов) и сиалогликопротеинов клеточных мембран, коллагена, гиалуроновой кислоты, сульфитированных гликозамингликанов, гепарина.

Он обычно располагается на поверхности фибробластов и участвует в адгезии всех перечисленных клеточных структур, а, значит, и клеток. Известно, что при опухолевых заболеваниях количество фибронектина снижается, что способствует метастазированию опухоли.

На молекуле фибронектина есть центр связывания для энзима трансглутаминазы, регулирующая реакцию между остатками глутаминовой кислоты одного белка и остатками лизина другого белка. Присоединяясь к фибронектину, трансглутаминаза «сшивает» отдельные молекулы белка друг с другом и с другими белками. Благодаря своим свойствам фибронектин выполняет интегративную функцию в организации межклеточного вещества, а также способствует адгезии клеток, поэтому его называют «молекулярным клеем». Различные типы фибронектина способствуют миграции эпителиальных и мезенхимальных клеток, стимулируют пролиферацию и миграцию эмбриональных и опухолевых клеток, контролируют дифференцировку и поддержания цитоскелета клеток, участвующих в воспалительных и пролиферативных процессах.

К растворимым гликопротеинам также относятся COR-белок - компонент протеогликанов, связующие белки, а также целый ряд белков плазмы крови.

Нерастворимые гликопротеины образуют "каркас", "строму" межклеточного матрикса [3].

К нерастворимым гликопротеинам относятся: Ламинин, нидоген, фибриллин, остеонектин, тенасцин и тромбоспондин.

Ламинин относят к нерастворимым белкам базальных мембран. Его молекула имеет крестообразную форму и состоит из трех полипептидных цепей. Молекула ламинина имеет центры связывания для коллагена IV типа, нидогена, фибронектина и других веществ, несколько центров связывания с клетками. Основная функция белка — моделирование клеточного поведения через воздействие на их рост, морфологию, дифференцировку и подвижность. Он выполняет функцию адгезивного белка для эпителиальных и мезенхимальных клеток.

Нидоген — сульфатированный гликопротеин базальных мембран. Белок имеет один полипептидную цепь с тремя глобулярными доменами: один имеет центр связывания ламинина, другой — центр связывания коллагена IV типа. Нидоген может образовывать тройной комплекс ламининнидогенколаген, связывает различные компоненты межклеточного матрикса. Он содержит специфические последовательности для присоединения к клеточной поверхности.

Фибриллин — структурный гликопротеин, компонент микрофибрилл, который обеспечивает образование эластиновых волокон. Он есть в аорте, хрусталике глаза. Нарушение его синтеза белка вызывает развитие синдрома Марфана.

Остеонектин, тенасцин, тромбоспондин — гликопротеины, участвующие в эмбриогенезе и морфогенезе, клеточного ответа на повреждения, способные взаимодействовать с различными лигандами, могут проявлять как антиадгезивные, так и адгезивные свойства. Концентрация этих белков может повышаться при некоторых опухолевых заболеваниях [4].


 

Список использованной литературы:

1. Биохимия тканей и жидкостей полостей рта: учебное пособие / Вавилова Т.П. - 2-е изд., испр. и доп. - 2008. - 208 с.: ил.

2. http://allrefs.net/c26/4czgq/p149/

3.http://medbe.ru/materials/kostnaya-i-khryashchevaya-tkan/soedinitelnaya-tkan-stroenie-funktsii-sostav/

4. http://bagazhznaniy.ru/priroda/specialnye-belki-soedinitelnoj-tkani





Поделиться с друзьями:


Дата добавления: 2017-01-28; Мы поможем в написании ваших работ!; просмотров: 2861 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2173 - | 2117 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.