Формулировка
Пусть постоянный ток течёт по контуру γ, находящемуся в вакууме, — точка, в которой ищется поле, тогда индукция магнитного поля в этой точке выражается интегралом (в системе СИ)
Направление перпендикулярно и , то есть перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление вращения головки винта дает направление , если поступательное движение буравчика соответствует направлению тока в элементе. Модуль вектора определяется выражением (в системе СИ)
Векторный потенциал даётся интегралом (в системе СИ)
К основным характеристикам элементов цепи относятся их вольт-амперные, вебер-амперные и кулон-вольтные характеристики, описываемые дифференциальными или (и) алгебраическими уравнениями. Если элементы описываются линейными дифференциальными или алгебраическими уравнениями, то они называются линейными
Принцип суперпозиции магнитных полей: магнитная индукция в любой точке магнитного поля проводника с током равна векторной сумме магнитных индукций , созданных в этой точке всеми элементами проводника с током, т. е.
,
2.1. Энергия заряженного проводника и конденсатора. Энергия электрического поля
Энергия электростатического поля.
Энергия заряженного плоского конденсатора Eк равна работе A, которая была затрачена при его зарядке, или совершается при его разрядке.
A = CU2/2 = Q2/2С = QU/2 = Eк.
Поскольку напряжение на конденсаторе может быть рассчитано из соотношения:
U = E*d,
где E - напряженность поля между обкладками конденсатора,
d - расстояние между пластинами конденсатора,
то энергия заряженного конденсатора равна:
Eк = CU2/2 = ee0S/2d*E2*d2 = ee0S*d*E2/2 = ee0V*E2/2,
где V - объем пространства между обкладками конденсатора.
Энергия заряженного проводника
Как известно, заряд сосредоточивается на поверхности проводника, причем поверхность проводника эквипотенциальна. Разбивая эту поверхность на маленькие участки, каждый из которых имеет заряд Δ q, и учитывая, что потенциал в месте расположения каждого из зарядов одинаков, имеем
(6.7) |
Так как емкость проводника C = q /φ, то выражение (6.7) может быть также представлено, как
(6.8) |
Энергия заряженного конденсатора
Пусть заряд + q находится на обкладке с потенциалом φ1 а заряд - q на обкладке с потенциалом φ2. Тогда на основании тех же рассуждений, которые привели к выражению (6.7), получим
(6.9) |
где U - разность потенциалов на обкладках конденсатора. Аналогично переходу от (6.7) к (6.8) выражение для энергии конденсатора может быть представлено также в виде
(6.10) |