Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами




Уравнение вида y''+ ρ y'+qy=f (x), где ρ и q – вещественные числа, f (x) – непрерывная функция, называется линейным дифференциальным уравнением с постоянными коэффициентами.
Рассмотрим линейное уравнение второго порядка вида:
y''+ ρ y'+qy =0,
у которого правая часть f (x) равна нулю. Такое уравнение называется однородным.
Уравнение
K 2 + ρ K+q =0
называется характеристическим уравнением данного уравнения.
Характеристическое уравнение является квадратным уравнением, имеющим два корня. Обозначим их через К 1 и К 2.
Общее решение уравнения может быть записано в зависимости от величины дискриминанта D2–4 q уравнения следующим образом:
1. При D >0 корни характеристического уравнения вещественные и различные (К 1К 2), и общее решение имеет вид .
2. При D =0 корни характеристического уравнения вещественные и равные (К 1= К 2= К), и общее решение имеет вид:
3. Если D <0, то корни характеристического уравнения комплексные: , где – мнимая единица, и общее решение (К 1=α+β i, К 2=α–β i, β≠0), имеет вид y = e α x (C 1 cosβ x + C 2 sinβ x).

 

 


Пример 1. Найти общее уравнение y''–y' –2 y =0.
Решение. Характеристическое уравнение имеет вид K 2 –K –2=0, его корни К 1=1, К 2=–2 вещественные и различные. Общее решение уравнения имеет вид y = C 1 ex + C 2 e –2 x .

 


Пример 2. Найти общее решение уравнения y'' –2 y' + y =0.
Решение. Характеристическое уравнение имеет вид К 2–2 К +1=0, его корни К 1 = К 2=1 – вещественные и равные. Общее решение уравнения имеет вид y = ex (C 1+ C 2 x).
Пример 3. Найти общее решение уравнения y'' –4 y' +13 y =0.
Решение. Характеристическое уравнение имеет вид К 2–4 К +13=0, его корни К 1=2+3 i, К 2=2–3 i комплексные. Общее решение уравнения имеет вид y = e 2 x (C 1 cos3 x + C 2sin3 x).
Рассмотрим теперь линейное неоднородное уравнение второго порядка:
y''+ ρ x+qy = f (x),
где f (x) – непрерывная функция, отличная от нуля.
Общее решение такого уравнения представляет собой сумму частного решения неоднородного уравнения и общего решения yо соответствующего однородного уравнения (1):
.
Поскольку нахождение общего решения однородного уравнения мы уже рассмотрели, то остаются рассмотреть вопрос о нахождении частного решения. Рассмотрим различные виды правых частей уравнения.
1) Пусть правая часть имеет вид f (x)= e α x Pn (x), где Pn (x) – многочлен степени n. Тогда частное решение ищем в виде , где Qn (x) – многочлен той же степени, что и Pn (x), а r – число, показывающее, сколько раз α является корнем характеристического уравнения.

 

 


Пример 4. Найти общее решение уравнения y'' –2 y'+y = x 2+1.
Решение. Общее решение соответствующего однородного уравнения имеет вид yo = ex (C 1+ C 2 x)(см. пример 2). Так как правая часть уравнения является многочленом второй степени и ни один из корней характеристического уравнения не равен нулю (К 1= К 2=1), то частное решение ищем в виде , где А, В, С – неизвестные коэффициенты. Дифференцируя дважды =Ax 2 +Bx+C и подставляя =Ax 2 +Bx+C, , в данное уравнение находим 2 A– 4 Ax– 2 B+Ax 2 +Bx+C=x 2 + 1, или Ax 2 + (B– 4 A) x+ 2 A– 2 B+C=x 2 + 1.
Приравнивая коэффициенты при одинаковых степенях х в обеих частях равенства, имеем А =1, В -4 А =0, 2 А -2 В + С =1, Находим А =1, В =4, С =7. Итак, частное решение данного уравнения имеет вид , а общее решение - .
Пример 5. Найти общее решение уравнения и частное решение, удовлетворяющее начальным условиям
.
Решение. Общее решение соответствующего однородного уравнения имеет вид y o = C 1 ex + C 2 e –2 x (см. пример 1). В правой части данного уравнения стоит произведение многочлена нулевой степени на показательную функцию e α x при α=2. Так как среди корней характеристического уравнения нет корней, равных 2, то частное решение данного уравнения ищем в виде =Ae 2 x .
Дифференцируя и подставляя в уравнение получаем:
и , откуда , .
Подставляя найденное значение А в выражение для , найдем частное решение данного уравнения и общее решение запишется в виде . Найдем частное решение, удовлетворяющее начальным условиям. Для этого продифференцируем у. .
Подставляем начальные условия в у и у', находим С 1 и С 2:



.
Подставляя найденное значение С 1 и С 2 в выражение для у, найдем частное решение данного уравнения
.
2) Пусть правая часть имеет вид и α+β i, (α–β i) не является корнем характеристического уравнения. Тогда частное решение ищем в виде .
Если же α+β i, (α–β i) является корнем характеристического уравнения, то частное решение находим в виде .

 


Пример 6. Найти общее решение уравнения .
Решение. Здесь характеристическое уравнение К 2+1=0 имеет корни К 1= i, К 2=- i. Поэтому общее решение соответствующего однородного уравнения будет y = C 1cos x + C 2sin x. В правой части стоит тригонометрическое функция то есть a =0, b =1, β=2. Так как β=2 не является корнем характеристического уравнения, то частное решение надо искать в виде: .
Дифференцируя и подставляя его в дифференциальное уравнение, получим , откуда , т.е. частное решение , а общее решение уравнения: .

 

 

 





Поделиться с друзьями:


Дата добавления: 2017-01-28; Мы поможем в написании ваших работ!; просмотров: 789 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2150 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.