Кроме приобретенных желтух наблюдаются и врожденные нарушения обмена билирубина. Эти заболеванияотносят к группе гепатозов.
1.Синдром Жильбера. встречается у 2-5 %населения.Он связан со снижением поглощения билирубина гепатоцитами в результате дефекта бел ков-переносчиков: либо лигандина, либо протеина Z. Заболевание наследуется по аутосомно-рецессивному типу. В крови повышена концентрация непрямого билирубина.При этом синдроме могут наблюдаться легкое
недомогание и болезненность печени при надавливании, но другах физикальных признаков нет.
2.СиндромКриглера - Наджара (Найяра). отсутствие (или недостаток)УДФ-глюкуронилтранферазы. В крови увеличен непрямой билирубин. Введение фенобарбитала не дает эффекта и больные погибают в первые два года жизни.
3.СиндромДабина- Джонсона. Развивается вследствие дефекта секреции прямого билирубина в желчь. При данном заболевании имеется дефект АТФ-зависимой транспортной системы. У больных повышен как прямой, так и непрямой билирубин.
4.Синдром Ротора. Это хроническая семейная гипербилирубинемия. Имеется сочетание снижения глюкуронирования и нарушения транспорта билирубина через мембрану клеток в желчь. При данном виде желтухи превалирует накопление прямого билирубина и частично увеличен непрямой билирубин.
2. Мышечная ткань составляе 40-42% от массы тела. Стр ед мыш ткани явл мышечное волокно, в кот различают сарколемму, саркоплазму, пучки миофибрилл и опорные белки стромы (каллоген и элластин). В сарколемме много ядер, митохонднрий, полисом; в ней содерж липиды, гликоген, миоглобин, ферменты и азотосодерж небелковые в-ва (креатинин, креатин). Белки миофибрилл бывают сокр-е (актин и миозин – 80%) и регуляторные (тропонин и тропомиозин – 20%). Миозин имеет стр-ру ассиметрического гексамера, состоящего из 2х идентичных тяжёлых и 4х лёгких полипептидных цепей. Тяжёлые цепи заканчиваются головками. Саркомер – функциональная ед миофибрилл.
Билет 48. 1. Переваривание нуклеопротеинов и всасывание продуктов их распада осуществляются в пищеварительном тракте. Под влиянием ферментов желудка, частично соляной кислоты, нуклеопротеины пищи распадаются на полипептиды и нуклеиновые кислоты; первые в кишечнике подвергаются гидролитическому расщеплению до свободных аминокислот. Распад нуклеиновых кислот происходит в тонкой кишке в основном гидролитическим путем под действием ДНК- и РНКазы панкреатического сока. Продуктами реакции при действии РНКазы являются пуриновые и пи-римидиновые мононуклеотиды, смесь ди- и тринуклеотидов и резистентные к действию РНКазы олигонуклеотиды. В результате действия ДНКазы образуются в основном динуклеотиды, олигонуклеотиды и небольшое количество мононуклеотидов. Полный гидролиз нуклеиновых кислот до стадии мононуклеотидов осуществляется, очевидно, другими, менее изученными ферментами (фосфодиэстеразами) слизистой оболочки кишечника.В отношении дальнейшей судьбы мононуклеотидов существует два предположения. Считают, что мононуклеотиды в кишечнике под действием неспецифических фосфатаз (кислой и щелочной), которые гидролизируют фосфоэфирную связь мононуклеотида («нуклеотидазное» действие), расщепляются с образованием нуклеозидов и фосфорной кислоты и в таком виде всасываются. Согласно второму предположению, мононуклеотиды всасываются, а распад их происходит в клетках слизистой оболочки кишечника. Имеются также доказательства существования в стенке кишечника нуклеотидаз, катализирующих гидролитический распад моно-нуклеотидов. Дальнейший распад образовавшихся нуклеозидов осуществляется внутри клеток слизистой оболочки преимущественно фосфороли-тическим, а не гидролитическим путем.Всасываются преимущественно нуклеозиды, и в таком виде часть азотистых оснований может быть использована для синтеза нуклеиновых кислот организма. Если происходит дальнейший распад нуклеозидов до свободных пуриновых и пиримидиновых оснований, то гуанин не используется для синтетических целей. Другие основания в тканях могут включаться в состав нуклеиновых кислот. Таким образом, синтез нуклеиновых кислот, мономерными единицами которых являются мононуклеотиды, будет определяться скоростью синтеза пуриновых и пиримидиновых нуклеотидов; синтез последних в свою очередь зависит от наличия всех составл 40 Механизм синтеза пиримидиновых нуклеотидов почти полностью расшифрован благодаря исследованиям П. Рейхарда. Показано, что в клетках животных и в микроорганизмах конечными продуктами синтеза также не являются свободные пиримидиновые основания и остаток рибозы присоединяется к уже сформировавшемуся пиримидиновому кольцу. Синтез начинается с элементарных уровней (СО2, NH3, аспартат), и специфическую ключевую роль выполняет оротовая кислота.I стадия синтеза УМФ включает катализируемое цито-плазматической карбамоилфосфатсинтетазой образование карбамоилфос-фата из глутамина. На II стадии карбамоилфосфат реагирует с аспартатом, в результате чего образуется N-карбамоиласпарагиновая кислота. Последняя подвергается циклизации (под действием дигидрооротазы) с отщеплением молекулы воды, при этом образуется дигидрооротовая кислота, которая, подвергаясь дегидрированию, превращается в оротовую кислоту. В этой реакции участвует специфический НАД-содержащий фермент дигидро-оротатдегидрогеназа. Оротовая кислота обратимо реагирует с ФРПФ, являющимся донатором рибозо-фосфата, с образованием оротидин-5'-фос-фата (ОМФ). Декарбоксилирование последнего приводит к образованию первого пиримидинового нуклеотида – уридин-5-фосфата (УМФ). Превращение УМФ в УДФ и УТФ осуществляется, как и пуриновых нуклеотидов, путем фосфотрансферазных реакций: УМФ + АТФ <=> УДФ + АДФ; УДФ + АТФ <=> УТФ + АДФ.
2. Клеточный состав нервной ткани: нейроны и нейроглия. Нейроны – это осн функц ед нервной ткани непосредственного контакта с кровью не имеют, т.к. отделены гематоэнцефалическим барьером, представленным сплошным эндотелием, утолщённой базальной мембраной и слоем глиоцитов, создающих доп слой на пов-ти стенок капилляров. Особенностью нерв ткани явл исп липидов в кач стр-го мат-ла, в то время как в др тканях эту ф-ю вып белки липиды представлены цереброзидами, ганглиозидами, сфингомиелинами, плазмалогенами, фосфотидилсиринами, фосфотидилхолинами и холистерином. Миелиновые мембраны имеют 3 слоя белка и 2 слоя липидов, в кот входят фосфотидилсерин, цереброзин, сфингомиелины и холистерин. В сером в-ве головного мозга 5% липидов, в белом – 17%. Специфич-ми белками явл: белок S-100, нейрофизин, нейротубулин и нейростенин. Пептиды: карнозин, анзерин, гумокарнозин, энкефалин и пептид сна. В нервной ткани концентр свободных аминок-т в 8 раз большеЮ чем в плазме крови. Центр место в обмене принадлежит глутаминовой к-те, глутамину и аспарагиново й к-те. Глутаминовая к-та нейтрализует аммиак в нерв ткани, превращаясь в глутами, кот удаляется через гемоэнцефалический барьер в кровь.
Билет 49. 1. Катаболизм пуриновых нуклеотидов приводит к образованию ксантина, который в организме человека превращается в мочевую кислоту. Часть свободных пуриновых оснований используется повторно (реутилизация) под действием ферментов гипоксантин-гуанин-фосфорибозиттрансферазы и аденинфосфорибозилтрансферазы, которые превращают пуриновые основания в нуклеотиды. Донором фосфорибозильной группы служит 5’-фосфорибозил-1’-пирофосфат (PRPP). Гиперурикемия - состояние, проявляющееся повышением содержания мочевой кислоты в крови. Причинами гиперурикемии может быть: - избыточный синтез мочевой кислоты вследствие нарушения регуляции -снижение в плазме концентрации уратсвязывающего белка - транспортного белка для мочевой кислоты -замедление выведения мочевой кислоты с мочой -снижение скорости реутилизации пуриновых оснований. Подагра - заболевание, причиной которого является гиперурикемия. Так как мочевая кислота плохо растворимое соединение, то при повышении концентрации происходит ее кристаллизация и накопление в суставах под кожей или в виде почечных камней. Способом, снижающим синтез мочевой кислоты, является применение в качестве лекарства аллопуринола - конкурентного ингибитора ксантиноксидазы, фермента, катализирующего превращение гипоксантина в ксантин и ксантина в мочевую кислоту. В результате катаболизм нуклеотидов приводит к образованию гипоксантина, который является более растворимым веществом. Синдром Леша-Нихана - генетическое заболевание, связанное с повышением у детей синтеза мочевой кислоты и, как следствие этого, развитием различных нейрофизиологических нарушений: замедлению умственного развития, агрессивности и т.д. Причиной этого является дефект фермента гипоксантин-гуанин-фосфорибозил-трансферазы, который катализирует реутилизацию гуанина и гипоксантина. В этом случае образуется больше ксантина и, следовательно, мочевой кислоты. Кроме того, снижение синтеза GMP и IMP из свободных оснований ухудшает регуляцию скорости их синтеза из мелких фрагментов путем реутилизации.
Катаболизм пиримидиновых нуклеотидов приводит к образованию пиримидиновых оснований, а затем протекает разными путями в зависимости от вида организма. У человека конечными продуктами распада являются СО2, NН3, -аланин (из урацила) и -иминомасляная кислота из тимина. Ферменты реутилизации свободных пиримидиновых оснований не были обнаружены, но клетки млекопитающих обладают способностью реутилизировать пиримидиновые рибонуклеозиды - уридин и цитидин, превращая их в соответствующие нуклеотиды.
Реутилизация пуриновых оснований
Свободные пуриновые и пиримиди-новые основания непрерывно образуются в клетках в результате описанного выше метаболического распада нуклеотидов. Значительная часть этих свободных пуриновых оснований не подвергается дальнейшему распаду, а реутилизирует-ся, т.е. используется вновь для синтеза пуриновых нуклеотидов. В этом случае нуклеотиды образуются совсем не так. как при биосинтезе de novo, который мы рассмотрели выше. Пуриновое ядро аденина, синтезирующееся de novo, строится на рибозо-5-фосфате этап за этапом, в длинной последовательности реакций. Путь биосинтеза из готовых продуктов гораздо проще. Он включает всего лишь одну реакцию, в ходе которой свободный аденин взаимодействует с 5-фосфорибозил-1-пирофосфатом
(ФРПФ), что и приводит к образованию аденинового нуклеотида
Аденин + ФРПФ -»• AMP + РР,.
Свободный гуанин реутилизируется тем же путем при помощи другого фермента
Гуанин + ФРПФ — GMP + РР;.
2. Инсули́н — гормон пептидной природы, образуется в бета-клетках островков Лангерганса поджелудочной железы. Оказывает многогранное влияние на обмен практически во всех тканях. Основное действие инсулина заключается в снижении концентрации глюкозы в крови.
Инсулин увеличивает проницаемость плазматических мембран для глюкозы, активирует ключевые ферменты гликолиза, стимулирует образование в печени и мышцах из глюкозы гликогена, усиливает синтез жиров и белков. Кроме того, инсулин подавляет активность ферментов, расщепляющих гликоген и жиры. То есть, помимо анаболического действия, инсулин обладает также и антикатаболическим эффектом. Нарушение секреции инсулина вследствие деструкции бета-клеток — абсолютная недостаточность инсулина — является ключевым звеном патогенеза сахарного диабета 1-го типа. Нарушение действия инсулина на ткани — относительная инсулиновая недостаточность — имеет важное место в развитии сахарного диабета 2-го типа. Так или иначе инсулин затрагивает все виды обмена веществ во всём организме. Однако в первую очередь действие инсулина касается именно обмена углеводов. Основное влияние инсулина на углеводный обмен связано с усилением транспорта глюкозы через клеточные мембраны. Активация инсулинового рецептора запускает внутриклеточный механизм, который напрямую влияет на поступление глюкозы в клетку путём регуляции количества и работы мембранных белков, переносящих глюкозу в клетку. В наибольшей степени от инсулина зависит транспорт глюкозы в двух типах тканей: мышечная ткань (миоциты) и жировая ткань (адипоциты) — это т. н. инсулинозависимые ткани. Составляя вместе почти 2/3 всей клеточной массы человеческого тела, они выполняют в организме такие важные функции как движение, дыхание, кровообращение и т. п., осуществляют запасание выделенной из пищи энергии. Глюкагон — гормон альфа-клеток островков Лангерганса поджелудочной железы. По химическому строению глюкагон является пептидным гормоном. Механизм действия глюкагона обусловлен его связыванием со специфическими глюкагоновыми рецепторами клеток печени. Это приводит к повышению опосредованной G-белком активности аденилатциклазы и увеличению образования цАМФ. Результатом является усиление катаболизма депонированного в печени гликогена (гликогенолиза). Глюкагон для гепатоцитов служит внешним сигналом о необходимости выделения в кровь глюкозы за счёт распада гликогена (гликогенолиза) или синтеза глюкозы из других веществ - глюконеогенеза. Гормон связывается с рецептором на плазматической мембране и активирует при посредничестве G-белка аденилатциклазу, которая катализирует образование цАМФ из АТФ. Далее следует каскад реакций, приводящий в печени к активации гликогенфосфорилазы и ингибированию гликогенсинтазы Этот механизм приводит к высвобождению из гликогена глюкозо-1-фосфата, который превращается в глюкозо-6-фосфат. Затем под влиянием глюкозо-6-фосфатазы образуется свободная глюкоза, способная выйти из клетки в кровь. Таким образом, глюкагон в печени, стимулируя распад гликогена, способствует поддержанию глюкозы в крови на постоянном уровне.Глюкагон также активирует глюконеогенез, липолиз и кетогенез в печени. Глюкагон практически не оказывает действия на гликоген скелетных мышц, по-видимому, из-за практически полного отсутствия в них глюкагоновых рецепторов. Глюкагон вызывает увеличение секреции инсулина из здоровых β-клеток поджелудочной железы и торможение активности инсулиназы. Это является, по-видимому, одним из физиологических механизмов противодействия вызываемой глюкагоном гипергликемии. Глюкагон оказывает сильное инотропное и хронотропное действие на миокард вследствие увеличения образования цАМФ (то есть оказывает действие, подобное действию агонистов β-адренорецепторов, но без вовлечения β-адренергических систем в реализацию этого эффекта). Результатом является повышение артериального давления, увеличение частоты и силы сердечных сокращений. В высоких концентрациях глюкагон вызывает сильное спазмолитическое действие, расслабление гладкой мускулатуры внутренних органов, в особенности кишечника, не опосредованное аденилатциклазой. Глюкагон участвует в реализации реакций типа «бей или беги», повышая доступность энергетических субстратов (в частности, глюкозы, свободных жирных кислот, кетокислот) для скелетных мышц и усиливая кровоснабжение скелетных мышц за счёт усиления работы сердца. Кроме того, глюкагон повышает секрецию катехоламинов мозговым веществом надпочечников и повышает чувствительность тканей к катехоламинам, что также благоприятствует реализации реакций типа «бей или беги».