Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Теоремы Ферма, Ролля. Необходимые условия экстремума




РАЗДЕЛ 4. ОСНОВНЫЕ ТЕОРЕМЫ АНАЛИЗА И ФОРМУЛА ТЕЙЛОРА

· Излагаются основные теоремы анадиза и формула Тейлора

· Рассматриваются вопросы, важные для построения математических моделей

ТЕОРЕМЫ ФЕРМА, РОЛЛЯ. НЕОБХОДИМЫЕ УСЛОВИЯ ЭКСТРЕМУМА

Пусть - некоторая проколотая окрестность точки а.

Определение: Точка аточка локального максимума f(x), если для всех x выполняется неравенство f(x)<f(a). Если для всех x выполняется неравенство , то говорят о точке нестрогого максимума.

Аналогичным образом определяются точки локального минимума и нестрогого локального минимума. Следует только заменить входящие в определение неравенства неравенствами и , соответственно.

Обобщающие названия для точек максимума и минимума – точки экстремума.

Теорема1(П. Ферма): Пусть функция y=f(x) определена в окрестности точки а, пусть эта точка – точка экстремума (хотя бы нестрогого) для функции f(x) и пусть существует производная Тогда =0.

Рассмотрим, для определенности, случай точки максимума. Тогда для всех x выполняется неравенство f(x)<f(a), или . Если x и х<a, то .

По условию существует производная . Значит, существует . По теореме о предельном переходе в неравенствах, .

Аналогично, при x , х>a выполняется неравенство , поэтому . Так как, = = , должны выполняться неравенства , из которых следует доказываемое равенство =0. ►

Примечание 1. В точке экстремума производная может не существовать. Примером служит функция . Она имеет минимум в точке х=0. однако , и не существует.

Примечание 2. Теорема Ферма дает необходимое условие экстремума, но не достаточное, т.е. производная функции в точке может равняться нулю, а экстремума в этой точке нет. Пример: . Эта функция имеет производную , обращающуюся в ноль при х=0, однако возрастает на всей числовой прямой.

Следствие (необходимые условия экстремума). Если функция непрерывна на (а;b), то точками локального экстремума могут быть только такие точки х0, в которых производная функции либо не существует, либо обращается в 0.

Теорема2( М.Ролль ) Пусть

Тогда существует точка с (a;b) такая, что =0.

Замечание 1. все условия теоремы Ролля являются существенными. Это означает, что если не выполняется одно из них, а остальные два выполняются, заключение теоремы может оказаться неверным.

Примеры. 1)

Выполнены условия 2) и 3), не выполнено условие 1). Для всех имеем =1.

2) f(x)= , x [-1;1].

Не выполнено условие 2), условия 1),3) выполнены. На интервале (-1;0): =-1; на интервале (0;1): =1. В точке x=0 производная не существует, поэтому на (-1;1) нет такой точки, что =0

3) f(x)=x

Выполнены первые 2 условия, третье на отрезке [0;1] не выполнено. Всюду на (0;1) имеем =1.

Следствие: Пусть

Тогда существует точка такая, что .

Замечание. Геометрический смысл теоремы Ролля: при ее условиях есть хотя бы одна точка с на интервале (а;b), касательная в которой параллельна оси x.





Поделиться с друзьями:


Дата добавления: 2016-12-17; Мы поможем в написании ваших работ!; просмотров: 443 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2312 - | 2095 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.