Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Примеры для самостоятельного решения. 12.3.1. Вода вытекает из отверстия в дне цилиндрическо­го сосуда




 

12.3.1. Вода вытекает из отверстия в дне цилиндрическо­го сосуда. Высота цилиндра H, площадь основания S, площадь отверстия . Составить математическую модель истечения воды и определить время, за которое вытечет вся жидкость.

12.3.2. В дне котла, имеющего форму полушара радиусом 1 м и наполненного водой, образовалась щель площадью 0,25 см 2. Найти время истечения воды из котла.

12.3.3. За какое время вода, заполняющая полусферическую чашу диаметром 2 м, вытечет из нее через круглое отверстие радиусом 0,1 м, вырезанное в дне?

12.3.4. Высота цилиндрического резервуара с вертикаль­ной осью равна 6 м, а диаметр 4 м. За какое время вода, заполняющая резервуар, вытечет из него через имеющееся в дне круглое отверстие радиусом 1/12 м?

12.3.5. Длина цилиндрического резервуара с горизон­тальной осью равна 6 м, диаметр 4 м. За какое время вода, заполняющая резервуар, вытечет из него через имеющееся в дне круглое отверстие радиусом 1/12 м?

12.3.6. Вертикально стоящий резервуар имеет в дне небольшое отверстие. Предполагая, что скорость истечения воды пропорциональна давлению, найти, за какое время вытечет половина первоначального объема воды, если известно, что 1/10 этого объема вытечет за первые сутки.

12.3.7. В резервуар глубиной 4 м, поперечное сечение которого — квадрат со стороной 6 м, поступает вода со скоростью 10 м /мин. За какое время резервуар будет наполнен, если в то же время вода вытекает из него через имеющееся в дне квадратное отверстие со стороной 1/12 м?

Распространение теплоты

 

Если на каждой из поверхностей, ограничивающих какое-либо тело, поддерживать постоянную температуру, то по истечении некоторого вре­мени тело приходит в состояние, при котором температу­ра в каждой его определенной точке постоянна (не зависит от времени). Если температура Т является функ­цией только одной координаты, например х, то в этом слу­чае, согласно закону Ньютона для теплопроводности, количество теплоты, проходящее за 1 с через площадку A, перпендикулярную к оси Ох,

,

где k — постоянная величина, называемая теплопроводностью данного вещества.

Скорость охлаждения тела в воздухе пропорциональна разности между температурой тела и температурой воздуха: , где Т - температура тела в момент времени ; t - температура воздуха; k - положительный коэффициент пропорциональности.

 

Решение типовых примеров

 

Пример 6. Полый железный шар (, внутренний радиус которого 6 см, а внешний 10 см, находится в стационарном тепловом состоянии, причем температура на внутренней его поверхности 200 °С, а на внешней 20 °С. Найти температуру на расстоянии r (6 см < r < 10 см) от центра шара и количество теплоты, которое шар отдает в окружающую среду за 1 с.

Решение. Температура тела на поверхности А, представляющей собой сферу радиусом r, где 6 см < r < 10 см, зависит только от r, Т = Т(r). Площадь поверхности А равна 4 r 2. Количество теплоты, проходящее через поверхность А, определяется законом Ньютона

Поскольку источников теплоты между поверхностями шара нет, приходим к следующему выводу: через поверхность А для любого r проходит одно и то же количество теплоты, т. е. Q = const. Интегрируя записанное выше уравнение, получаем 4 Подставляя сюда Т = С, и , находим: С=-1000 , Q=10800 , Т= 2700/r — 250. Тогда Q = 108 = 19892,77 Дж/с.

 





Поделиться с друзьями:


Дата добавления: 2017-01-21; Мы поможем в написании ваших работ!; просмотров: 1207 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2378 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.