Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Приведение вторичной обмотки и векторная диаграмма.




Физический смысл приведения состоит в том, что вторичная обмотка с числом витков W2 заменяется обмоткой, у которой число витков W’2 = W1. При этом все параметры вторичной обмотки приводятся к числу витков первичной обмотки таким образом, чтобы физические процессы в приведенном трансформаторе оставались такими же, как в реальном. Все параметры, относящиеся к приве­денной вторичной обмотке, обозначают теми же символами, что и действительные, но со штрихом сверху: E'2, I'2, R'2, X'2, и т. д.

Для приведения вторичной обмотки трансформатора к первич­ной необходимо обеспечить:

1) равенство МДС приведенной и реальной вторичной обмотки: I2W2= I’2W’2;

2) равенство электромагнитных мощностей приведенной и ре­альной обмоток: E2I2= E’2I’2;

3) равенство полных мощностей приведенной и и ре­альной обмоток: U2I2= U’2I’2;

4) равенство потерь: ;

5) равенство сдвига фаз между токами и ЭДС: ;

При анализе всех этих равенств определяются условия приведения:

1) ; 2) ; 3) ; 4) ; 5) .

С учетом сделанных преобразований запишем комплексные уравнения для приведенного трансформатора:

Векторные диаграммы, соответствующие этой системе, приведены на рис. 1.14.

Последовательность построения диаграммы зависит от того, какими параметрами задан режим работы трансформатора и значе­ния каких величин требуется найти путем графических построений.

Из приведенных на рис. 2-14 векторных диаграмм нетрудно заметить, что при постоянном первичном напряжении U1=const любое изменение тока нагрузки I`2 приводит не только к изменению первичного тока I1, но и к соответствующему изменению вторичного напряжения U’2. Так, при активной и активно-индуктивной нагрузках (ри

 

с. 2а, 2б) увеличение тока I`2 вызовет некоторое уменьшение U’2, а при активно-емкостной нагрузке (рис. 2-14, в) - некоторое его увеличение. Векторные диаграммы позволяют также рассмотреть процесс преобразования энергии в трансформаторе, который, как известно, в целях переменного тока ха­рактеризуется активной и реактивной

 
 

мощностями.

 
 
Рис. 2-14. Векторные диаграммы трансформатора: а —при активной нагрузке; б — при активно - индуктивной нагрузке; в —при активно-емкостной нагрузке  

 

 


Расчеты, связанные с исследованием работы трансформатора, можно свести к расчетам простых цепей переменного тока. Для этого заменим трансформатор некоторой схемой, сопротивление которой Z экв определим; из уравнений напряжений (2-36) и (2-38) и уравнения токов (2-17). Перепишем эти уравнения в следующем виде:

(2-40)

(2-41)

(2-42)

где [см. уравнение (2-12)];

― приведенное к числу витков первичной обмотки сопротивление внешней вторичной цепи, падение напряжения в котором, очевидно, и есть .

Подставив в (2-41) значение тока из (2-42), найдем:

Подставив в (2-40) найденное значение , получим:

(2-43)

Сопротивлению Z экв соответствует схема, представленная на рис. 2-17. Она называется схемой замещения трансформатора. Здесь ветвь с сопротивлением может быть названа ветвью намагничивания. Очевидно, что уравнения напряжений и токов, составленные согласно законам Кирхгофа для этой схемы, будут такими же, как и уравнения (2-40) — (2-42).

Рис. 2-17. Схема замещения трансформатора.

В схеме замещения переменным параметром является сопротивление ; остальные ее параметры можно считать постоянными. Они могут быть определены путем расчета, а также опытным путем. В последнем случае обращаются к данным опытов холостого хода и короткого замыкания.

Опыт холостого хода

По данным опыта холостого хода определяются коэффициент трансформации , магнитные потери Р с и параметры ветви намагничивания Магнитные потери Р с, как указывалось, могут быть приняты равными мощности Р 0, потребляемой трансформатором при холостом ходе.

При опыте холостого хода собирается схема по рис. 2-18 для однофазного трансформатора или по рис. 2-19 для трехфазного трансформатора. При номинальном напряжении (линейном в случае трехфазного трансформатора) измеряют и Опыт холостого хода должен производиться при синусоидальном напряжении. Если напряжение заметно отличается от синусоидального, то в данные измерений необходимо внести некоторые поправки (согласно ГОСТ). При исследовании малых трансформаторов следует учитывать потери в приборах, так как они могут быть соизмеримы с потерями холостого хода.

Рис. 2-18 Схема при опыте холостого хода для однофазного трансформатора.

Рис. 2-19. Схема при опыте холостого хода для трехфазного трансформатора.

Измерения U 1 и U 20 производятся при помощи вольтметров или при высоком напряжении, при помощи вольтметров и измерительных трансформаторов напряжения. По данным измерений находят коэффициент трансформации: U 20/ U 1 По амперметру и ваттметру находят ток и мощность P 0 в случае однофазного трансформатора. В случае трехфазного трансформатора необходимо измерить токи во всех трех фазах, так как вследствие несимметрии магнитных цепей отдельных фаз токи в них будут различны. За ток холостого хода здесь принимается среднее арифметическое токов отдельных фаз, т. е.

(2-44)

Мощности отдельных фаз также различны; поэтому мощность, потребляемую трехфазным трансформатором при холостом ходе, следует измерять двумя ваттметрами по схеме рис. 2-19.

Для нормальных силовых трансформаторов ток холостого хода составляет (0,10—0,04) I Н при номинальных мощностях от 5 до нескольких тысяч киловольт-Ампер.

Холостому ходу будет соответствовать схема замещения рис. 2-17 при =∞. Следовательно, по данным опыта холостого хода получаем:

Так как для нормальных трансформаторов r 12 больше r 1 и x 12 больше х 1 в сотни раз, то можно принять:

1-7. Опыт короткого замыкания

По данным опыта короткого замыкания определяются потери короткого замыкания Р к, которые могут быть приняты равными электрическим потерям в обмотках, и параметры трансформатора, к которым приходится обращаться при решении многих практических задач.

Под коротким замыканием трансформатора здесь понимается такой режим его работы, при котором вторичная обмотка замкнута накоротко, а к первичной обмотке подведено напряжение. Этому режиму работы соответствует схема замещения (рис. 2-17) при =0.

Так как сопротивления z 1 и в сотни раз меньше сопротивления z 12, то при коротком замыкании трансформатора можно пренебречь током в этом сопротивлении, т. е. принять . В этом случае получаем схему замещения, представленную на рис. 2-20.

Рис. 2-20. Схема замещения короткозамкнутого трансформатора.

Векторная диаграмма короткозамкнутого трансформатора приведена на рис. 2-21.

Рис. 2-21. Векторная диаграмма короткозамкнутого трансформатора.

От этой диаграммы мы можем перейти к диаграмме, представленной на рис. 2-22.

Рис. 2-22. Треугольник короткого замыкания.

Прямоугольный треугольник ОАВ называется треугольником короткого замыкания трансформатора. Один его катет другой катет и гипотенуза

Сопротивления

называются соответственно активным, индуктивным и полным сопротивлениями короткого замыкания трансформатора. Параметры короткого замыкания z к, r к и x к определяются по данным опыта короткого замыкания. При этом опыте собирается одна из схем, приведенных на рис. 2-18 и 2-19, но вторичные зажимы замыкаются накоротко. Измеряют U , I 1, P к. Напряжение U устанавливают такое, чтобы ток был приблизительно равен номинальному току Оно для нормальных трансформаторов мощностью от 20 до 10000 кВА составляет от 5 до 10% номинального напряжения В соответствии с указанными значениями и подбирают при опыте короткого замыкания измерительные приборы.

Так как при этом опыте а следовательно, и поток Ф (E 1 ≈ 0,5 U , рис. 2-21) составляют всего несколько процентов от их значений при номинальном напряжении (а потери в стали приблизительно пропорциональны Ф2), то магнитными потерями можно пренебречь и считать, что мощность P к, потребляемая трансформатором при коротком замыкании, идет на покрытие электрических потерь в обмотках трансформатора:

(2-45)

Отсюда находим:

(2-46)

Согласно ГОСТ активные сопротивления обмоток трансформаторов, по которым определяются электрические потери и активные падения напряжения, должны быть приведены к температуре 75° С. Это приведение делаем согласно соотношению

(2-47)

где — температура обмоток, °С, при опыте короткого замыкания.

Далее определяем:

(можно принять, что от температуры не зависит) и

После этого определяем номинальное напряжение короткого замыкания U к = I z к75. Оно, очевидно, равно напряжению, которое, будучи приложено к одной обмотке трансформатора при замкнутой накоротко его другой обмотке, создаст в обеих обмотках номинальные токи.

Напряжение U к = I z к75 выражается в процентах номинального напряжения той обмотки, со стороны которой производились измерения при опыте короткого замыкания:

(2-48)

Процентное значение номинального напряжения короткого замыкания указывается на щитке трансформатора. Оно для нормальных трансформаторов лежит в пределах 5 — 10%. Также выражаются в процентах номинального напряжения реактивная и активная составляющие напряжения короткого замыкания:

(2-49)
(2-50)

Если числитель и знаменатель правой части равенства (2-50) умножить на I и число фаз т, то получим:

(2-51)

т. е. в то же время дает процентное значение электрических потерь в обмотках трансформатора или потерь короткого замыкания при номинальных токах.

Значения r 1 и r 2 могут быть измерены при постоянном токе, например при помощи амперметра и вольтметра Полученные при этом сопротивления будут несколько меньше активных сопротивлений обмоток. Активные сопротивления больше сопротивлений, измеренных при постоянном токе, в 1,03 — 1,07 раза вследствие наличия вихревых токов в проводниках обмоток и в других металлических частях трансформатора, вызванных полями рассеяния.

Определить отдельно значения х 1 и x 2 довольно трудно. Практически достаточно найти только х к.

1-8. Потери и коэффициент полезного действия

При работе трансформатора в нем возникают потери — магнитные и электрические.

Магнитные потери, или потери в стали Р с, принимаются, как отмечалось, равными потерям холостого хода P 0. Они зависят от частоты тока, от индукций В с в стержне и В я в ярме сердечника, а также от весов стержней и ярм. Для уменьшения магнитных потерь и реактивной составляю­щей тока холостого хода сечение ярма берут несколько больше (на 5—10%) сечения стержня. Потери P 0 приблизительно пропорциональны квадрату индукции (В 2) и частоте тока в степени 1,3 (f1,3).

Электрические потери, или потери короткого замыкания, пропорциональны квадрату тока.

Коэффициент полезного действия (к.п.д.) трансформатора имеет высокие значения: от 0,96 при S ≈ 5 кВА до 0,995 при номинальной мощности, составляющей десятки тысяч кВА. Поэтому определение его непосредственным методом по формуле

(2-61)

где Р 2 — полезная (вторичная) мощность; Р 1 — затраченная (первичная) мощность, практически не может дать точных результатов.

Так как потери в трансформаторе невелики, то следует определять к.п.д. трансформатора косвенным методом и пользоваться при этом формулой

(2-62)

где — сумма всех потерь в трансформаторе;
m — число фаз;
r к75 и P 0 — активное сопротивление короткого замыкания при 75°С и потери холостого хода, которые определяются, как указывалось ранее, по данным опытов короткого замыкания и холостого хода. Можно считать в обычных условиях U2 = U = const, P 0 = const.

Тогда, обозначив , получим:

(2-63)

где S н = mU 2 I — номинальная мощность; Р к н — потери короткого замыкания при номинальных токах в обмотках трансформатора.

В правой части (2-63) переменной величиной является только . Обычным путем можно найти максимум функции . Для этого приравняем ее первую производную нулю:

В полученной дроби знаменатель при реальных значениях не может быть равным бесконечности. Поэтому нужно приравнять нулю числитель. Отсюда найдем, что к.п.д. будет максимальным, когда потери короткого замыкания будут равны потерям холостого хода:

, (2-64)

т. е. при равенстве переменных потерь постоянным потерям (при изменении нагрузки практически изменяются только потери короткого замыкания).

Для трансформаторов, выпускаемых заводами Советского Союза, имеем:

P 0: P к.н = 0,5÷0,25,что дает: = 0,7

Следовательно, к.п.д. получается максимальным при нагрузке, составляющей 50—70% от номинальной. Такая нагрузка обычно и соответствует средней нагрузке при эксплуатации трансформатора.

При вычислении к.п.д. пользуются формулой

(2-62, а)

1-9. Трансформирование трехфазного тока

Для трансформирования трехфазного тока применяются или трехфазные трансформаторы, или «трехфазные группы», состоящие из трех однофазных трансформаторов.

Наибольшее распространение на практике получили трехфазные стрежневые трансформаторы с расположением стержней в одной плоскости.

Сердечник одного из таких трансформаторов показан на рис. 2-28.

Рис. 2-28. Сердечник трехфазного стержневого трансформатора.

Здесь же указаны потоки (в соответствии с векторным уравнением потоков , причем за положительное их направление условно принято направление снизу вверх. Очевидно, амплитуда потока в ярме равна амплитуде потока в стержне.

Трехфазная группа, состоящая из трех однофазных трансформаторов, представлена на рис. 2-29.

Рис. 2 29. Трехфазная группа.

Одна из ее обмоток соединена в звезду, другая, как правило, соединяется в треугольник (§ 2-13).

На рис. 2-30, а представлен трехфазный броневой трансформатор.

Рис. 2-30. Трехфазный броневой трансформатор и распределение потоков в его сердечнике.

Обычно его стержни располагаются горизонтально с помещенными на них дисковыми чередующимися обмотками (рис. 2-8). Здесь различают продольные ярма, расположенные параллельно стержням, и поперечные ярма, расположенные перпендикулярно стержням. Продольные и поперечные ярма выполняются обычно с сечением, равным примерно половине сечения стержня. В трехфазном броневом трансформаторе средняя фаза первичной и вторичной обмоток должна быть соединена в обратном порядке по сравнению с крайними фазами. На рис. 2-30, а показано соединение обмотки высшего напряжения в звезду. Здесь правый зажим средней фазы принят за начало фазы, а левый — за ее конец в противоположность тому, что принято для крайних фаз. Только в этом случае поток в промежуточных поперечных ярмах равен полусумме потоков соседних стержней (рис. 2-30, б и в).

Неправильным будет соединение, при котором за начало и конец средней фазы приняты такие же зажимы, что и для крайних фаз, так как в этом случае в промежуточных поперечных ярмах поток будет равен полуразности потоков в соседних стержнях, т. е. в раз больше, чем в предыдущем случае.

1-10. Соединения обмоток трансформаторов

Обратимся к однофазному трансформатору, обмотки которого показаны на рис. 2-31.

Рис. 2-31. Обозначения зажимов обмоток однофазного трансформатора.

Согласно ГОСТ зажимы обмоток обозначаются так, как указано на этом рисунке. Начало и конец обмотки высшего напряжения обозначаются соответственно прописными буквами А и X. Для обмотки низшего напряжения берутся строчные буквы: а — начало и х — конец обмотки.

Зажимы обмоток трехфазных трансформаторов обозначаются, как указано на рис. 2-32.

Рис. 2-32. Обозначения зажимов обмоток трех фазного трансформатора.

Зная обозначения зажимов обмоток, мы можем правильно соединить обмотки трехфазного трансформатора и трехфазной группы в звезду или треугольник. Их необходимо также знать при включении трансформаторов на параллельную, работу.

Соединение обмотки, например, высшего напряжения в звезду показано на рис. 2-33.

Рис. 2-33. Соединение обмотки в звезду.

Напомним, что в этом случае линейное напряжение в раз больше фазного, а линейный ток равен фазному.

На рис. 2-34 показано соединение обмотки в треугольник.

Рис. 2-34. Соединение обмотки в треугольник.

Здесь линейное напряжение равно фазному, а линейный ток в раз больше фазного.

Соединение обмоток в звезду и звезду обозначают Y/Y и называют "звезда — звезда" или "игрек — игрек". Соединение обмоток в звезду и треугольник обозначают Y/ и называют "звезда — треугольник" или "игрек — дельта". Если от обмотки, соединенной в звезду, выводится нулевая точка, то такое соединение обозначают Y0 и называют «звезда с нулем» или «игрек нулевое».

Следует иметь в виду, что отношение линейных напряжений U л1 и U л2 трансформатора зависит не только от чисел витков обмоток w 1 и w 2 (на фазу), но и от способов их соединения:

при Y/Y

при Y/∆

при ∆/Y

1-11. Группы соединений

В зависимости от сдвига по фазе между линейными первичной и вторичной э.д.с. на одноименных зажимах трансформаторы разделяются на группы соединений, причем каждую группу составляют трансформаторы с одинаковым сдвигом по фазе между указанными э.д.с.

Для обозначения группы соединений выбирается ряд целых чисел от 1 до 12; здесь условно принято, что единица соответствует 30° по аналогии с углами между минутной и часовой стрелками часов в 1, 2,..., 12 ч. При определении группы соединений с вектором э.д.с. обмотки высшего напряжения нужно совместить минутную стрелку, а с вектором э.д.с. обмотки низшего напряжения — часовую стрелку. Отсчет угла производится от минутной стрелки к часовой по направлению их вращения.

Обратимся к однофазному трансформатору, обмотки которого представлены на рис. 2-35.

Рис. 2-35. Однофазный трансформатор 1/1-12.

Если они выполнены при одинаковом направлении намотки (например, по часовой стрелке, если смотреть от А к X и от a к х), то наведенные в них э.д.с. изобразятся векторами, направленными в одну и ту же сторону (рис. 2-35). Такой трансформатор принадлежит к группе соединений, обозначаемой числом 12. Его условное обозначение: 1/1-12.

Если тот же трансформатор будет иметь обмотку, например, низшего напряжения, у которой будут переставлены обозначения зажимов по сравнению с предыдущим случаем, то сдвиг между э.д.с. будет равен 180° (рис. 2-36).

Рис. 2-36. Однофазный трансформатор 1/1-6.

Такой трансформатор принадлежит к группе соединений, обозначаемой числом 6.

Обратимся к трехфазному трансформатору, представленному на рис. 2-37.

Рис. 2-37. Трехфазный трансформатор Y/Y-12.

Здесь обе обмотки соединены в звезду и намотаны в одинаковом направлении от начал к концам фаз. Векторные диаграммы э.д.с. показывают, что сдвиг между линейными э.д.с. АВ и ab в данном случае равен 0°. В этом мы убеждаемся, совместив при наложении диаграмм точки А и а. Следовательно, рассматриваемый трансформатор принадлежит к группе 12. Его полное обозначение: Y/Y-12.

Если у трехфазного трансформатора группы 12 поменять местами начала и концы фаз, например обмотки низшего напряжения, то получается трансформатор группы 6 (рис. 2-38). Его обозначают: Y/Y-6.

Рис. 2-38. Трехфазный трансформатор Y/Y-6.

Трехфазные трансформаторы с соединением обмоток Y/Y принадлежат к группам 6 и 12, если на каждом стержне сердечника помещены одноименные фазы. Если же у одной из обмоток сделать круговое перемещение обозначений зажимов, например вместо аbс сделать саb и затем bса, то при каждом перемещении будем поворачивать звезду вторичных э. д. с. на 120° и, следовательно, переходить от группы 12 к группам 4 и 8, а от группы b — к группам 10 и 2. Таким образом, при соединении обмоток Y/Y можем получить все четные группы соединений 2, 4, 6, 8, 10, 12.

Обратимся к трехфазному трансформатору с соединением обмоток Y/∆ представленному на рис. 2-39.

Рис. 2-39. Трехфазный трансформатор Y/∆-5.

Векторные диаграммы э.д.с., приведенные на этом же рисунке, показывают, что сдвиг между линейными э.д.с. здесь равен 330°. Следовательно, трансформатор принадлежит к группе 11. Он обозначается: Y/ -11.

Если у рассмотренного трансформатора (рис. 2-39) поменять местами начала и концы фаз обмотки низшего напряжения, то получается трансформатор группы 5 (рис. 2-40) со сдвигом между линейными э.д.с., равным 150°. Такой трансформатор обозначается Y/∆-5.

Рис. 2-40. Трехфазный трансформатор Y/∆-5.

Если сделать круговое перемещение обозначений зажимов для обмотки низшего напряжения трансформаторов, представленных на рис. 2-39 и 2-40, то перейдем соответственно от группы 11 к группам 3 и 7 и от группы 5 к группам 9 и 1. Следовательно, при соединении обмоток Y/∆ (или ∆/Y) можем noлучить все нечетные группы 1, 3, 5, 7, 9, 11.

Такое большое разнообразие групп соединений трансформаторов не только не требуется, но вызывало бы большие затруднения на практике, например при осуществлении параллельной работы трансформаторов (§ 2-17).

В СССР стандартизованы только две группы соединений: 12 и 11. Все выпускаемые советскими заводами нормальные однофазные трансформаторы и трехфазные с соединением обмоток Y/Y принадлежат к группе 12, а трехфазные трансформаторы с соединением обмоток Y/∆ — к группе 11.

1-12. Автотрансформатор

Автотрансформатор отличается от трансформатора тем, что у него обмотка низшего напряжения является частью обмотки высшего напряжения, причем она выполняется из проводников, в общем случае отличающихся по сечению от проводников другой части, и обычно располагается относительно другой части, как показано на рис. 2-48.

Рис. 2-48. Схема понижающего автотрансформатора (а); расположение частей его обмоток относительно стержня сердечника (б).

Следовательно, части Аа и аХ можно рассматривать как обмотки двухобмоточного трансформатора, имеющие между собой не только магнитную связь, но и электрическую.

Автотрансформаторы могут служить как для понижения, так и для повышения напряжения. Они выполняются для небольших коэффициентов трансформации, не сильно отличающихся от единицы, и в этом случае, как показано в дальнейшем, экономичнее в работе и требуют на изготовление меньше материалов, чем обычные двухобмоточные трансформаторы на ту же номинальную мощность.

За номинальную мощность автотрансформатора принимается мощность S н = U I = U I .

Приложенное к обмотке АX напряжение , уравновешивается в основном э.д.с. . Электродвижущая сила создает ток во вторичной цепи, при этом следовательно,

Пренебрегая током холостого хода, согласно закону полного тока можем написать:

отсюда

(2-77)

Ток в общей части обмотки аX равен геометрической сумме первичного и вторичного токов: (2-78)

Для понижающего трансформатора I 2> I 1 следовательно, ток общей части обмотки равен

что дает возможность соответственно уменьшить сечение ее проводников.

Учитывая (2-77), получим:

Части обмотки А — а и а — X магнитно уравновешены, т. е. их н.с. равны и противоположно направлены, что следует из соотношений

(2-79)

Для того чтобы можно было сравнить автотрансформатор с двухобмоточным трансформатором, найдем расчетную мощность S а автотрансформатора.

Расчетная мощность S а1 части обмотки А — а равна:

(2-80)

расчетная мощность Sa 2 части обмотки а — X равна:

(2-81)

Следовательно, S al = S a2, так как E 1 I 1 = E 2 I 2.

Отсюда найдем расчетную мощность автотрансформатора при номинальных значениях токов и напряжений:

(2-82)

Размеры автотрансформатора рассчитываются для мощности

тогда как размеры двухобмоточного трансформатора рассчитываются для мощности S н.

Таким образом, расчетная мощность автотрансформатора меньше его номинальной мощности, называемой также полной или проходной:

(2-83)

Размеры трансформатора определяются значением электромагнитной мощности при cos φ2 = 1, т. е. мощности, которая при этом передается магнитным полем с первичной на вторичную обмотку. Действительно, для данной частоты тока эта мощность По магнитному потоку Ф определяются сечения стержней и ярм трансформатора (сечение где B = 12000 14500 Гс при f = 50 Гц); по току — сечения проводников (, где для масляных трансформаторов ); по числу витков, сечению проводников и их изоляции — размеры окна трансформатора (площадь окна равна произведению высоты стержня на расстояние между соседними стержнями).

В двухобмоточном трансформаторе магнитным полем передается мощность S н = E I = E I , а в автотрансформаторе — только часть этой мощности

другая часть мощности

передается во вторичную внешнюю цепь непосредственно по проводам.

Очевидно, что автотрансформаторы тем экономичнее по сравнению с двухобмоточными трансформаторами, чем ближе w 2 к w 1, т. е. чем ближе коэффициент трансформации к единице. Так как веса обмотки и стали сердечника автотрансформатора меньше весов тех же материалов двухобмоточного трансформатора, то и потери в нем меньше, а к.п.д. выше при той же мощности S н. Параметры, а следовательно, и изменение напряжения также имеют меньшие значения.

Изменение напряжения автотрансформатора определяется по аналогии с двухобмоточным трансформатором. Напишем в соответствии с рис. 2-48, а уравнения напряжений:

(2-84)

(2-85)

где ZA = rА + А — сопротивление части обмотки А — а; Zx = rx + jxx — сопротивление части обмотки а — X.

Так как то (2-85) можем переписать в следующем виде:

(2-86)

Заменив в (2-84) и (2-86) через по (2-78 а) получим;

(2-87)

(2-88)

Отсюда найдем изменение напряжения для понижающего автотрансформатора:

(2-89)

где = — сопротивление Zx части а — X с числом витков w 2, приведенное к числу витков (w 1, — w 2) части обмотки А — а.

Параметры ZА и Zx могут быть рассчитаны как для двухобмоточного трансформатора, имеющего с первичной стороны (w 1w 2) витков и со вторичной стороны w 2 витков при тех же сечениях проводников, размерах сердечника и обмоток, что и для частей обмоток Аа, а — X и сердечника автотрансформатора.

Значение

может быть найдено также по данным опыта короткого замыкания, при котором автотрансформатор следует использовать как двухобмоточный трансформатор: пониженное напряжение (порядка 5—10% от должно быть подведено к части обмотки А — а, а часть обмотки а—X должна быть замкнута накоротко.

Ток короткого замыкания I найдем из (2-89), приравняв U 2 = 0:

(2-90)

Номинальное напряжение короткого замыкания автотрансформатора

(2-91)

Для двухобмоточного трансформатора при том же токе I , имеющего первичную обмотку с (w 1w 2) витками, номинальное напряжение короткого замыкания u к будет определяться отношением

(2-92)

Следовательно,

(2-93)

Отсюда следует, что и к.а автотрансформатора меньше, чем и к двухобмоточного трансформатора при тех же значениях

Z 1 = ZA и Z 2 =

Поэтому токи короткого замыкания автотрансформатора могут иметь очень большие значения, если w 2 близко к w 1. Следует также принять во внимание, что в этом случае может сильно возрасти намагничивающий ток в части обмотки А — а, которым мы пренебрегали в предыдущих выводах.

Для повышающего автотрансформатора, схема которого показана на рис. 2-49, можем написать следующие уравнения напряжений:

(2-94)

(2-95)

(2-96)

Рис. 2-49. Схема повышающего автотрансформатора.

Учитывая (2-78 а) и (2-76), получим:

(2-97)

(2-98)

Отсюда имеем:

(2-99)

Приравняв в (2-99) = 0, найдем ток короткого замыкания:

(2-100)

 

Номинальное напряжение короткого замыкания u а к автотрансформатора

(2-101)

При сравнении с двухобмоточным трансформатором последний надо взять с числами витков во вторичной обмотке (w 2w 1,) и в первичной обмотке w 1, но с номинальным током в первичной обмотке Тогда номинальное напряжение короткого замыкания такого двухобмоточного трансформатора

(2-102)

Следовательно, и для повышающего автотрансформатора

(2-103)

Недостатком автотрансформатора является то, что здесь вторичная цепь оказывается электрически соединенной с первичной цепью. Она должна иметь такую же изоляцию по отношению к земле, как и первичная цепь. Это обстоятельство заставляет выбирать значение коэффициента трансформации автотрансформатора при высоких напряжениях не выше 2—2,5.

Схема трехфазного автотрансформатора представлена на рис. 2-50.

Рис. 2-50. Схема трехфазного автотрансформатора.

Автотрансформаторы находят себе применение в качестве пусковых для пуска больших синхронных двигателей и короткозамкнутых асинхронных двигателей, для осветительных установок (для дуговых ламп переменного тока), для связи сетей с напряжениями, мало отличающимися одно от другого. В последнем случае трехфазные автотрансформаторы снабжаются еще одной обмоткой, соединенной треугольником, для подавления третьей гармоники в кривых магнитных потоках и, следовательно, в кривых фазных э.д.с. (см. § 2-13).

Автотрансформаторы выполняются также с устройством, позволяющим плавно регулировать их вторичное на­пряжение. Регулирование напряжения осуществляется путем изменения числа витков обмотки при помощи специальных переключателей или контакта, перемещаемого непосредственно по обмотке, очищенной с одной стороны от изоляции.

 

1-13. Трехобмоточный трансформатор

А) Общие сведения.

Большие трансформаторы, устанавливаемые в начале или конце длинных линий электропередачи и иногда на мощных промежуточных подстанциях, часто выполняются с тремя обмотками на каждую фазу, причем одна из них обычно служит в качестве первичной, а две другие — в качестве вторичных (рис. 2-51).

Рис. 2-51. Трехобмоточный трансформатор.

Например, на электрических станциях, от которых отходят две линии электропередачи, часто устанавливаются трехобмоточные трансформаторы с первичным напряжением 10,5 кВ и вторичными напряжениями 121 и 38,5 кВ (для линий электропередачи).

Трансформаторы с тремя (и больше) обмотками малой мощности применяются также в радиотехнических устройствах.

Трехобмоточный трансформатор заменяет собой два двухобмоточных трансформатора. Его применение, очевидно, выгоднее, чем последних.

Если пренебречь током холостого хода, то можно написать, что сумма н.с. всех трех обмоток равна нулю:

(2-104)

или

(2-105)

где и ― токи второй и третьей обмоток, приведенные к числу витков первой обмотки.

Пусть первая обмотка будет первичной, а вторая и третья — вторичными. Из (2-105) получаем:

(2-106)

т. е. первичный ток равен не арифметической, а геометрической сумме приведенных вторичных токов (взятой с обратным знаком). Учитывая это равенство, а также то, что вторичные обмотки обычно не имеют одновременно и длительно полной нагрузки, номинальная мощность первичной обмотки берется меньше суммы номинальных мощностей обеих вторичных обмоток.

114. Параллельная работа трансформаторов

Параллельное соединение трансформаторов необходимо для обеспечения бесперебойного энергоснабжения при выключении трансформаторов для ремонта. Далее оно целесообразно в тех случаях, когда мощность нагрузки сильно изменяется в течение суток; тогда можно в зависимости от общей нагрузки оставлять в работе столько трансформаторов, чтобы потери в них были наименьшими. При расширении подстанций, а также на мощных подстанциях устанавливается несколько трансформаторов, которые включаются на параллельную работу. При такой работе обмотки трансформаторов с первичной и вторичной стороны присоединяются к общим шинам, как показано на рис. 2-56.

Рис. 2-56. Схема включения на параллельную работу трансформаторов.

Здесь обмотки высшего напряжения служат в качестве первичных.

На параллельную работу трансформаторы могут быть включены только при соблюдении определенных условий. Эти условия практически сводятся к следующим:

1. равенство номинальных напряжений — первичных и вторичных (равенство коэффициентов трансформации);

2. трансформаторы должны принадлежать к одной и той же группе соединений;

3. равенство номинальных напряжений короткого замыкания.

При соблюдении первых двух условий напряжение между зажимами рубильника (рис. 2-56) до его замыкания равно нулю. В этом случае после включения рубильника никакого уравнительного тока в обмотках трансформаторов не получится.

Можно допустить различие в коэффициентах трансформации трансформаторов, включаемых на параллельную работу, не больше 0,5% от их среднего значения.

Недопустимо включение на параллельную работу трансформаторов, принадлежащих к разным группам соединений, так как результирующая э.д.с. в контуре вторичных обмоток вызовет при этом большой ток, который быстро приведет к чрезмерному нагреванию обмоток трансформаторов.

Соблюдение третьего условия необходимо для того, чтобы общая нагрузка распределялась пропорционально номинальным мощностям параллельно работающих трансформаторов.

Пренебрегая токами холостого хода, можем написать следующие уравнения напряжений:

(2-132)

(2-133)

где и — коэффициенты трансформации;

и

— сопротивления корoткoго замыкания со стороны вторичных обмоток.

Так как I2 = I 2I + I 2II, то вместо (2-132) и (2-133) можно написать:

(2-132 а)

(2-133 а)

Решая (2-132) и (2-132 а) в отношении I 21, а (2-133) и (2-133 а) в отношении I 211, получим:

(2-134)

Полученные равенства показывают, что ток каждого трансформатора состоит из уравнительного тока, обусловленного различием коэффициентов трансформации, и тока нагрузки. Очевидно, что уравнительный ток будет меть место и при отсутствии нагрузки (при I 2 = 0).

Из (2-134) также видно, что при k I = k II токи распределяются обратно пропорционально сопротивлениям короткого замыкания. В этом случае мы можем написать в соответствии со схемой, представленной на рис. 2-57,

Рис. 2-57. Схема для определения токов параллельно работающих трансформаторов.

Значение разности углов (φкII – φкI) в обычных случаях (если мощности параллельно работающих трансформаторов не сильно отличаются одна от другой) близко к нулю.

Переходя от отношения комплексов к отношению их модулей, имеем:

Если обе части равенства умножить на и левую часть, кроме того, на , то получим:

Из полученного соотношения следует, что мощности параллельно работающих трансформаторов, выраженные в долях их номинальных мощностей, относятся друг к другу, как обратные значения номинальных напряжений короткого замыкания. Если u кI u кII, то относительная нагрузка будет больше у того трансформатора, у которого u к меньше. Практически допускается различие между номинальными напряжениями короткого замыкания трансформаторов, включаемых на параллельную работу, в ±10% от их среднего значения.

Приведенные выводы могут быть распространены на любое число параллельно, работающих трансформаторов.

При включении на параллельную работу трехобмоточных трансформаторов необходимо соблюдение указанных условий для соответствующих пар обмоток обоих трансформаторов и, кроме того, необходимо, чтобы оба трансформатора имели одинаковое расположение вторичных обмоток относительно первичной. При включении двухобмоточного трансформатора на параллельную работу с трехобмоточным должны быть соблюдены те же условия для двухобмоточного трансформатора и соответствующих двух обмоток трехобмоточного трансформатора и, кроме того, последний должен иметь двустороннее расположение вторичных обмоток относительно первичной

1-15. Несимметричная нагрузка трехфазных трансформаторов

В обычных условиях эксплуатации трехфазной сети нагрузку удается распределить достаточно равномерно на все три фазы Однако бывают случаи, когда нагрузки фаз сильно отличаются одна от другой, например при питании мощных однофазных печей При этом системы токов и напряжений получаются несимметричными. Резко несимметричную систему токов получим, очевидно, при несимметричных коротких замыканиях: двухфазном и однофазном.

При исследовании работы трансформаторов, имеющих несимметричную нагрузку, применяется метод симметричных составляющих. Он также широко применяется при исследовании несимметричных режимов работы трехфазных генераторов и двигателей и позволяет наиболее просто и достаточно точно разрешить многие из возникающих при этом вопросов.





Поделиться с друзьями:


Дата добавления: 2016-12-17; Мы поможем в написании ваших работ!; просмотров: 601 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2258 - | 1997 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.