Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Решение задач Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Задача 1. Для цепи (рис. 1), определить эквивалентное сопротивление относительно входных зажимов a−g, если известно: R 1 = R 2 = 0,5 Ом, R 3 = 8 Ом, R 4 = R 5 = 1 Ом, R 6 = 12 Ом, R 7 = 15 Ом, R 8 = 2 Ом, R 9 = 10 Ом, R 10= 20 Ом.

Рис. 1

Решение

Начнем эквивалентные преобразования схемы с ветви наиболее удаленной от источника, т.е. от зажимов a−g:

Задача 2. Для цепи (рис. 2, а), определить входное сопротивление если известно: R 1 = R 2 = R 3 = R 4= 40 Ом.

Рис. 2

Решение

Исходную схему можно перечертить относительно входных зажимов (рис. 2, б), из чего видно, что все сопротивления включены параллельно. Так как величины сопротивлений равны, то для определения величины эквивалентного сопротивления можно воспользоваться формулой:

где R – величина сопротивления, Ом;

n – количество параллельно соединенных сопротивлений.

Задача 3. Определить эквивалентное сопротивление относительно зажимов a–b, если R 1 = R 2 = R 3 = R 4 = R 5 = R 6 = 10 Ом (рис. 3, а).

Рис. 3

Решение

Преобразуем соединение «треугольник» f−d−c в эквивалентную «звезду». Определяем величины преобразованных сопротивлений (рис. 3, б):

По условию задачи величины всех сопротивлений равны, а значит:

На преобразованной схеме получили параллельное соединение ветвей между узлами e–b, тогда эквивалентное сопротивление равно:

И тогда эквивалентное сопротивление исходной схемы представляет последовательное соединение сопротивлений:

Задача 4. В заданной цепи (рис. 4, а) определить методом эквивалентных преобразований входные сопротивления ветвей a−b, c–d и f−b, если известно, что: R 1 = 4 Ом, R 2 = 8 Ом, R 3 =4 Ом, R 4 = 8 Ом, R 5 = 2 Ом, R 6 = 8 Ом, R 7 = 6 Ом, R 8 =8 Ом.

Решение

Для определения входного сопротивления ветвей исключают из схемы все источники ЭДС. При этом точки c и d, а также b и f соединяются накоротко, т.к. внутренние сопротивления идеальных источников напряжения равны нулю.

Рис. 4

Ветвь a−b разрывают, и т.к. сопротивление Ra–b = 0, то входное сопротивление ветви равно эквивалентному сопротивлению схемы относительно точек a и b (рис. 4, б):

Аналогично методом эквивалентных преобразований определяются входные сопротивления ветвей Rcd и Rbf. Причем, при вычислении сопротивлений учтено, что соединение накоротко точек a и b исключает («закорачивает») из схемы сопротивления R 1, R 2, R 3, R 4 в первом случае, и R 5, R 6, R 7, R 8 во втором случае.

Задача 5. В цепи (рис. 5) определить методом эквивалентных преобразований токи I 1, I 2, I 3и составить баланс мощностей, если известно: R 1 = 12 Ом, R 2 = 20 Ом, R 3 = 30 Ом, U = 120 В.

Рис. 5

Решение

Эквивалентное сопротивление для параллельно включенных сопротивлений:

Эквивалентное сопротивление всей цепи:

Ток в неразветвленной части схемы:

Напряжение на параллельных сопротивлениях:

Токи в параллельных ветвях:

Баланс мощностей:

Задача 6. В цепи (рис. 6, а), определить методом эквивалентных преобразований показания амперметра, если известно: R 1 = 2 Ом, R 2 = 20 Ом, R 3 = 30 Ом, R 4 = 40 Ом, R 5 = 10 Ом, R 6 = 20 Ом, E = 48 В. Сопротивление амперметра можно считать равным нулю.

Рис. 6

Решение

Если сопротивления R 2, R 3, R 4, R 5 заменить одним эквивалентным сопротивлением RЭ, то исходную схему можно представить в упрощенном виде (рис. 6, б).

Величина эквивалентного сопротивления:

Преобразовав параллельное соединение сопротивлений RЭ и R 6 схемы (рис. 6, б), получим замкнутый контур, для которого по второму закону Кирхгофа можно записать уравнение:

откуда ток I 1:

Напряжение на зажимах параллельных ветвей Uab выразим из уравнения по закону Ома для пассивной ветви, полученной преобразованием RЭ и R 6:

Тогда амперметр покажет ток:

Задача 7. Определить токи ветвей схемы методом эквивалентных преобразований (рис. 7, а), если R 1 = R 2 = R 3 = R 4 = 3 Ом, J = 5 А, R 5 = 5 Ом.

Рис. 7

Решение

Преобразуем «треугольник» сопротивлений R 1, R 2, R 3 в эквивалентную «звезду» R 6, R 7, R 8 (рис. 7, б) и определим величины полученных сопротивлений:

Преобразуем параллельное соединение ветвей между узлами 4 и 5

Ток в контуре, полученном в результате преобразований, считаем равным току источника тока J, и тогда напряжение:

И теперь можно определить токи I 4 и I 5:

Возвращаясь к исходной схеме, определим напряжение U 32 из уравнения по второму закону Кирхгофа:

Тогда ток в ветви с сопротивлением R 3 определится:

Величины оставшихся неизвестными токов можно определить из уравнений по первому закону Кирхгофа для узлов 3 и 1:

 



<== предыдущая лекция | следующая лекция ==>
Стоимость денег во времени. Сложный процент и дисконтирование. | 
Поделиться с друзьями:


Дата добавления: 2016-12-31; Мы поможем в написании ваших работ!; просмотров: 25712 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2116 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.