Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Глава 1. Предварительные сведения. Министерство образования и науки РФ




Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение

Высшего образования

БРЯНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ АКАДЕМИКА И.Г.ПЕТРОВСКОГО»

(БГУ)

Естественно-научный институт

Физико-математический факультет

Кафедра алгебры и геометрии

Реферат

«Примарные и бипримарные группы»

Выполнил:

магистрант 1 курса 2 группы

направления 01.04.01 «Математика»

Клопов Н.В

Научный руководитель:

кандидат физико-математических наук, доцент Сорокина М.М.


 

СОДЕРЖАНИЕ

 

Введение. 3

Глава 1. Предварительные сведения. 5

1.1. Определения и обозначения, используемые в работе. 5

1.2. Используемые результаты.. 8

Глава 2. Примарные и бипримарные группы.. 10

2.1. Примарные группы и их простейшие свойства. 10

2.2. Теоремы Силова. 12

2.3. Свойства силовских подгрупп. 15

2.4. Бипримарные группы.. 16

Заключение. 18

Список литературы.. 19

 


Введение

 

Теория групп ‒ раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. Группа является центральным понятием в общей алгебре, так как многие важные алгебраические структуры, такие как кольца, поля, векторные пространства, являются группами с расширенным набором операций и аксиом.

Группы возникают во всех областях математики, и методы теории групп оказывают сильное влияние на многие разделы алгебры. В процессе развития теории групп построен мощный инструментарий, во многом определивший специфику общей алгебры в целом.

У теории групп имеется три исторических корня: теория алгебраических уравнений, теория чисел и геометрия. Математики, стоящие у истоков теории групп, ‒ это Леонард Эйлер, Карл Фридрих Гаусс, Жозеф Луи Лагранж, Нильс Хенрик Абель и Эварист Галуа.

Артур Кэли и Огюстен Луи Коши стали одними из первых математиков, оценивших важность теории групп. Эти учёные также доказали некоторые важные теоремы. Большой вклад в развитие теории групп внесли также многие другие математики XIX века: Бертран, Эрмит, Фробениус, Кронекер и Матьё.

Современное определение понятия «группа» было дано только в 1882 г. Вальтером фон Дюком. Одним из наиболее значительных математических прорывов XX века стала полная классификация конечных групп ‒ результат совместных усилий многих математиков, занимающий более 10 тысяч печатных страниц, основная часть которых опубликована с 1960 по 1980 годы.

В теории групп большую роль играют примарные группы и примарные подгруппы групп. Центральные результаты о таких группах получил норвежский математик Людвиг Силов в 1872 году.

Теоремы Силова представляют собой неполный вариант обратной теоремы к теореме Лагранжа и для некоторых делителей порядка группы гарантируют существование подгрупп такого порядка.

Реферат имеет следующую структуру. В первой главе приводятся некоторые предварительные сведения, используемые в работе. Основное содержание данного реферата представлено во второй главе. В ней исследованы свойства примарных и бипримарных групп и рассмотрены силовские -подгруппы с изучением основных теорем Силова.


Глава 1. Предварительные сведения

 

В реферате рассматриваются только конечные группы.

 





Поделиться с друзьями:


Дата добавления: 2016-12-31; Мы поможем в написании ваших работ!; просмотров: 369 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2781 - | 2342 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.