Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнения состояния и выхода соединений




МНОГОМЕРНЫЕ СИСТЕМЫ ПРИ ДЕТЕРМИНИРОВАННЫХ

ВОЗДЕЙСТВИЯХ

 

1.2.1. Описание сигналов и систем

 

1. Описание сигналов. Входные, выходные и промежуточные детермини­рованные сигналы в многомерных системах представляются вектор-функциями времени, например:

, ,

где -мерный входной, a -мерный выходной сигналы. В качестве компонент входного сигнала могут использоваться единичные ступенчатые функции (1.2) и дельта-функции (1.1).

2. Описание систем. Многомерныелинейные нестационарные системы в от­личие от одномерных имеют входов и выходов (рис. 1.16). Они описываются уравнениями состояния вида

(1.35)

С начальными условиями

(1.36)

И уравнениями выхода

, (1.37)

где -мерный вектор состояния; -мерный вектор входных воздействий (управлений); -мерный вектор выхода (вектор измерений); начальное ан-тояние; — время; — начальный момент времени (момент подачи входного воздействия); , , — матрицы размера , , соответственно.

Рис. 1.16

Многомерную систему можно рассматривать как совокупность одномерных систем, каждая из которых связывает один из входов с одним из выходов. Если и , система является одномерной. Если матрицы , , не зависят от времени , система называется многомерной стационарной.

 

Пример 1.15. Записать уравнения состояния и выхода многомерной системы:

в матричной форме.

□ Определяем размерности сигналов: , , и записываем соответствующие уравнения:

, .

Пример 1.16. Записать уравнения состояния и выхода многомерной системы

в матричной форме.

□ Определяем размерности сигналов: , , и записываем соответствующие уравнения:

, .

Пример 1.17. Записать уравнения состояния и выхода многомерной системы:

в матричной форме.

□ Обозначим , , , . Тогда уравнения можно переписать в виде

или в матричной форме (, , ):

, .

 

Уравнения состояния и выхода соединений

 

Как следует из разд. 1.2.1, многомерная система, описываемая уравнения­ми состояния и выхода, полностью характеризуется набором трех матриц: , , . Здесь и далее аргумент для сокращения записи опущен. Две многомерные системы могут образовывать три типа соединений: параллельное, последователь­ное и с обратной связью, изображенные на рис. 1.17, а — в.

 

Предполагается, что обе системы, образующие соединения, описываются в пространстве состояний соотношениями:

, , (1.38)

, , (1.39)

где , , — векторы состояния, входного сигнала и выхода первой системы размерности , , соответственно; , , — векторы состояния, входного сигнала и выхода второй системы, размерности которых , , соответ­ственно.

Рис. 1.17

Требуется заменить соединение эквивалентной системой, описываемой уравнениями (1.35), (1.37) и изображенной на рис. 1.17, г, в которой , , —размерности векторов состояния , входного сигнала и выхода .

1. Параллельное соединение (рис. 1.17, а). Условия соединения:

, , , .

Перепишем соотношения (1.38), (1.39) с учетом того, что :

, (1.40)

Полагая , и сравнивая с (1.35), (1.37), получаем матрицы

, ,

эквивалентной системы размера , , соответственно.

Пример 1.18. Системы, образующие параллельное соединение, описывают­ся уравнениями:

первая система:

, ,

где , , ;

вторая система:

, ,

где , , , , , .

Требуется записать уравнение эквивалентной системы.

□ Условия соединения , выполняются. Согласно (1.40) эквивалентная система имеет вид

, ,

где , , .

2. Последовательное соединение (рис. 1.17, б). Условие соединения , . В первом соотношении (1.39) учтем, что , а из сравнения рис. 1.17, б и 1.17, г, получаем: , , , . Эквивалентная сис­тема имеет вид

, (1.41)

 

Полагая матрицы , и сравнивая с (1.35), (1.37), получаем

, ,

эквивалентной системы размера , , соответственно.

Пример 1.19. Системы, образующие последовательное соединение, описы­ваются уравнениями: первая система:

, ,

где , , , , , ;

вторая система:

, ,

 

где , , .

Требуется записать уравнения эквивалентной системы.

□ Условие соединения выполняется. Согласно (1.41) эквива­лентная система имеет вид

, ,

где , , , .

3. Соединение с обратной связью (рис. 1.17, в). Условия соединения: , , , . В первом соотношении (1.38) положим , а в первом уравнении (1.39) . Сравнивая рис. 1.17, в и 1.17, г, получаем . Эквивалентная система имеет вид

, . (1.42)

Полагая , и сравнивая с (1.35), (1.37), получаем матрицы

, ,

 

эквивалентной системы размера , , соответственно. Знак «плюс» — для положительной, а знак «минус» — для отри­цательной обратной связи.

Пример 1.20. Системы, образующие соединение с отрицательной обратной связью, описываются уравнениями первая система

, ,

где , , ;

вторая система:

, ,

где , , .

Требуется записать уравнения жвивалентной системы.

□ Условия соединения , выполняются. Согласно (1.42) эквивалентная система имеет вид

, ,

где , , .

 





Поделиться с друзьями:


Дата добавления: 2016-12-31; Мы поможем в написании ваших работ!; просмотров: 1634 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Большинство людей упускают появившуюся возможность, потому что она бывает одета в комбинезон и с виду напоминает работу © Томас Эдисон
==> читать все изречения...

2548 - | 2207 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.