Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Описание алгоритмов с помощью блок-схем.




Для разработки структуры программы удобнее пользоваться записью алгоритма в виде блок-схемы (в англоязычной литературе используется термин flow-chart). Для изображения основных алгоритмических структур и блоков на блок-схемах используют специальные графические символы. Они приведены на рисунке

Начало/конец алгоритма

Передача управления

Ввод данных

Блок вычислений

Начало (заголовок) цикла

Конец цикла

Ветвление

Вывод данных

Составим алгоритм вычисления квадратного корня из произвольного положительного вещественного числа х методом Герона и запишем его на естественном языке, а также в виде блок-схемы. Метод основан на многократном применении формулы:

при

.

Числовая последовательность в пределе при сходится к искомому значению. Выполним только 5 итераций метода, считая, что при этом будет достигнута достаточно хорошая точность. Обычно десяти итераций метода Герона более чем достаточно для достижения хорошей точность расчёта. Оба варианта записи алгоритма:

1. Ввести х. 2. Присвоить . 3. Присвоить . 4. Присвоить . 5. Присвоить . 6. Если , то перейти к шагу 4, иначе напечатать значение .

А теперь займёмся самым любимым занятием школьников всех времён и народов – решением квадратного уравнения:

.

Будем полагать, что коэффициенты этого уравнения , и представляют собой вещественные числа. Простейший случай предполагает, что все коэффициенты отличны от нуля. В зависимости от знака дискриминанта квадратного уравнения

возможны три случая:

1. Если , то имеются два различных вещественных корня, которые можно вычислить по следующим формулам:

, .

2. Если , то имеется единственный корень (точнее, двукратный корень):

.

3. Если , то вещественных корней нет.

Блок схема алгоритма приведена на рисунке:

Следует заметить, что приведённый алгоритм предназначен для решения узкого класса задач – квадратных уравнений с «хорошими» коэффициентами. Если допустить, что коэффициенты могут принимать произвольные вещественные значения, есть опасность, что при определённых значениях коэффициента (например, ) возникает аварийная ситуация (деление на ноль). Качественный алгоритм и качественная программа должны быть устойчивыми, то есть при любых входных параметрах завершение работы программы должно быть нормальным, хотя, возможно, и сопровождаться предупреждающим сообщением о некорректности входных данных. Свойством устойчивости обладает алгоритм решения квадратного уравнения.

Разработанный программистом алгоритм должен давать правильный ответ. Проверка алгоритма может оказаться непростым делом. В простых случаях такая проверка может быть выполнена с помощью заполнения трассировочной таблицы. Каждый столбец такой таблицы соответствует определённой переменной, а каждая строка – одному шагу алгоритма. Для заполнения таблицы необходимо шаг за шагом проследить выполнение алгоритма, записывая в таблицу текущие значения выбранных для трассировки переменных. Такой метод позволяет выявить логические ошибки, допущенные при составлении или записи алгоритма, и определить, верен ли окончательный ответ. Составим в качестве примера трассировочную таблицу для алгоритма Герона вычисления квадратного корня из числа 2.

i z
  1,00000
  1,50000
  1,41666
  1,41421
  1,41421
  1,41421

Как видно из таблицы, уже после третьей итерации приближенное значение квадратного корня отличается от точного 1,414213 лишь в шестом знаке после запятой.

Заключение.

Создание алгоритма для решения задач какого-либо типа, его представление исполнителю в удобной для него форме – это творческий акт. Алгоритм может быть представлен различными способами: на разговорном естественном язык; на языке блок-схем; на языке программирования. Выбор и разработка алгоритма и численного метода решения задачи имеют важнейшее значение для успешной работы над программой. Тщательно проработанный алгоритм решения задачи – необходимое условие эффективной работы по составлению алгоритму.

 





Поделиться с друзьями:


Дата добавления: 2016-12-18; Мы поможем в написании ваших работ!; просмотров: 727 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2268 - | 2092 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.