Править]По модели данных
Примеры:
§ Иерархические
§ Сетевые
§ Реляционные
§ Объектно-ориентированные
§ Объектно-реляционные
Править]По степени распределённости
§ Локальные СУБД (все части локальной СУБД размещаются на одном компьютере)
§ Распределённые СУБД (части СУБД могут размещаться на двух и более компьютерах).
Править]По способу доступа к БД
§ Файл-серверные
В файл-серверных СУБД файлы данных располагаются централизованно на файл-сервере. СУБД располагается на каждом клиентском компьютере (рабочей станции). Доступ СУБД к данным осуществляется через локальную сеть. Синхронизация чтений и обновлений осуществляется посредством файловых блокировок. Преимуществом этой архитектуры является низкая нагрузка на процессор файлового сервера. Недостатки: потенциально высокая загрузка локальной сети; затруднённость или невозможность централизованного управления; затруднённость или невозможность обеспечения таких важных характеристик как высокая надёжность, высокая доступность и высокая безопасность. Применяются чаще всего в локальных приложениях, которые используют функции управления БД; в системах с низкой интенсивностью обработки данных и низкими пиковыми нагрузками на БД.
На данный момент файл-серверная технология считается устаревшей.
Примеры: Microsoft Access, Paradox, dBase, FoxPro, Visual FoxPro.
§ Клиент-серверные
Клиент-серверная СУБД располагается на сервере вместе с БД и осуществляет доступ к БД непосредственно, в монопольном режиме. Все клиентские запросы на обработку данных обрабатываются клиент-серверной СУБД централизованно. Недостаток клиент-серверных СУБД состоит в повышенных требованиях к серверу. Достоинства: потенциально более низкая загрузка локальной сети; удобство централизованного управления; удобство обеспечения таких важных характеристик как высокая надёжность, высокая доступность и высокаябезопасность
Примеры: Oracle, Firebird, Interbase, IBM DB2, Informix, MS SQL Server, Sybase Adaptive Server Enterprise, PostgreSQL, MySQL, Caché, ЛИНТЕР.
§ Встраиваемые
Встраиваемая СУБД — СУБД, которая может поставляться как составная часть некоторого программного продукта, не требуя процедуры самостоятельной установки. Встраиваемая СУБД предназначена для локального хранения данных своего приложения и не рассчитана на коллективное использование в сети. Физически встраиваемая СУБД чаще всего реализована в виде подключаемой библиотеки. Доступ к данным со стороны приложения может происходить через SQL либо через специальные программные интерфейсы.
Примеры: OpenEdge, SQLite, BerkeleyDB, Firebird Embedded, Microsoft SQL Server Compact, ЛИНТЕР.
Билет №15. Понятие алгоритма и его свойства. Блок-схемы алгоритма.
Введение.
Процессор электронно-вычислительной машины, это чудо техники, умеет, тем не менее, выполнять лишь простейшие команды. Каким же образом компьютер решает сложнейшие задачи обработки информации? Для решения этих задач программист должен составить подробное описание последовательности действий, которые необходимо выполнить центральному процессору компьютера. Составление такого пошагового описания процесса решения задачи называется алгоритмизацией, а алгоритмом называется конечный набор правил, расположенных в определённом логическом порядке, позволяющий исполнителю решать любую конкретную задачу из некоторого класса однотипных задач. В разных ситуациях в роли исполнителя может выступать электронное или какое-либо иное устройство или человек (например, военнослужащий, охраняющий склад боеприпасов и действующий согласно алгоритмам, записанным в устав караульной службы).
Свойства алгоритма.
При составлении и записи алгоритма необходимо обеспечить, чтобы он обладал рядом свойств.
Однозначность алгоритма, под которой понимается единственность толкования исполнителем правила построения действий и порядок их выполнения. Чтобы алгоритм обладал этим свойством, он должен быть записан командами из системы команд исполнителя.
Конечность алгоритма – обязательность завершения каждого из действий, составляющих алгоритм, и завершимость выполнения алгоритма в целом.
Результативность алгоритма, предполагающая, что выполнение алгоритма должно завершиться получением определённых результатов.
Массовость, т. е. возможность применения данного алгоритма для решения целого класса задач, отвечающих общей постановке задачи. Для того чтобы алгоритм обладал свойством массовости, следует составлять алгоритм, используя обозначения величин и избегая конкретных значений.
Правильность алгоритма, под которой понимается способность алгоритма давать правильные результаты решения поставленных задач.
Эффективность – для решения задачи должны использоваться ограниченные ресурсы компьютера (процессорное время, объём оперативной памяти и т. д.).