Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Предел функции в точке (при ).




Определение. Число называется пределом функции в точке, если:, такое, что при выполняется:.

(для любого числа эпсилон больше нуля, существует такое число дельта, так что если модуль разности меньше дельта, то модуль разности меньше, чем эпсилон).

Обозначение .

В случае существования предела, получается, что задавая погрешность можно найти такой интервал в области определения, что отклонение значений от А будет меньше чем . Фактически, часть графика впишется в некоторый прямоугольник, при уменьшении одной стороны будет уменьшаться и вторая.

У студентов может закономерно возникнуть вопрос, а для чего вообще нужно понятие предела в точке, и почему нельзя просто подставить и вычислить функцию. Проблема в том, что не всегда значение функции существует в точке. Иногда бывает так, что формально её вычислить нельзя. Например, для функции значение в точке =3 не существует. При вычислении на калькуляторе поочерёдно числителя и знаменателя, получили бы и калькуляторы, компьютеры выдали бы сообщение об ошибке. Но ведь в соседних точках значение функции есть. График функции подходит к некоторой точке в плоскости. Так вот, её ордината и равна этому пределу.

Пример. Вычислить предел .

В точке 3 значение функции не существует, однако во всех соседних точках существует, и можно узнать, к какой ординате стремится график при . Разложим на множители:

= = = 6.

Тот множитель, который отвечал за стремление к 0 в числителе и знаменателе, сокращён, поэтому далее удалось просто подставить 3 и получить ответ.

Как видим, методы разные: если неопределённость типа , то выделяем множители, чтобы сократить те множители, которые стремятся к 0. Если неопределённость , то корни искать не нужно, а нужно сократить на степенную функцию старшей степени. Для неопределённостей типа основным методом является разложение на множители, и сокращение тех множителей, которые ответственны за стремление к 0.

Пример функции, не имеющей предела в нуле. . Здесь при приближении к 0 бесконечное число колебаний, то есть, уменьшая область определения, например интервал , никак не удастся получить уменьшение области значений функции над этим интервалом, размах колебаний всё равно останется от -1 до 1. При подходе абсциссы к 0, функция здесь должна пройти бесконечное число колебаний амплитуды 2 (от -1 до 1).

 

 

Лекция № 10. 11. 11. 2016

Метод Лопиталя для неопределённостей . Несмотря на то, что тема «производные» подробно будет позже, и доказательство этого метода будет дано в той теме, производные для некоторых элементарных функций известны из школы, и можно этим пользоваться при вычислении пределов.

Если , при и ,

то .

Пример. = = = .

Этот метод можно применять и в 2 или более шагов, если после 1-го дифференцирования остаётся неопределённость .

Вычислим этим же способом = = 1.

График ln(1+x) это ln(x) сдвинутый влево на 1, касательная проходит ровно под углом 45 градусов, то есть совпадает с функцияей y = x. Если рассмотреть при большом увеличении, они почти неотличимы.

Ещё пример. .

Ещё пример. .

1-й замечательный предел. .

Доказательство 1-го замечательного предела из геометрических соображений.

Рассмотрим единичную окружность, и какой-либо угол. Длина дуги AB равна - это по определению радианной меры угла. Так как ОА это радиус, а мы взяли единичную окружность, то

.

Так как ОВ это тоже радиус, то .

Но длина дуги на чертеже больше, чем отрезок BD, и меньше, чем AC.

, то есть .

Совпадают они именно при .

Кстати, графики трёх функций именно так и расположены: у них общая касательная, тангенс выше, синус ниже, чем биссектриса.

Неравенства перепишем в виде: .

Теперь разделим всё на синус. . Рассмотрим обратные величины ко всем этим, пользуясь тем, что из следует . Получится .

Применим свойство, которое доказывали когда-то ранее: если и две крайние из 3 величин стремятся к А, то и средняя имеет предел и стремится к А.

Учитывая, что , а константа справа и так равна 1, то .

Если обозначение угла сменить, обозначить x, то и получается .

Следствия из 1-го замечательного предела:

, , , .

Пример. .

Более подробно: мы могли бы заменить , и учесть, что при будет и .

Пример. Найти предел .

Решение. Надо получить в знаменателе такое же выражение, как под знаком sin.

= = = 2.

Здесь можно в процессе решения переобозначить , причём при .

 

2-й замечательный предел.

Обратите внимание, что этот предел вовсе не 1, как могло бы показаться. Ведь в степень всегда возводится не 1, а число, большее, чем 1. Оно уменьшается, но оно ни при каком n не равно 1. Здесь 2 процесса: одновременно уменьшается основание до единицы, и при этом увеличивается степень. Всё зависит от соотношения скоростей этих процессов.

Если, к примеру, есть 2 процесса: растворение краски и замораживание ёмкости с водой, то существенно отличается результат, если выполнить 1-й или 2-й процесс раньше. Если сначала заморозить воду, то уже ничего не растворится, а если сначала растворить, то будет равномерная смесь. Если замораживать одновременно с растворением, то будет другой результат, краска растворится не равномерно. Короче говоря, мы не имеем права считать, что сначала уменьшили основание в выражении и только потом стали увеличивать степень, здесь оба процесса идут одновременно, поэтому сказать, что такой предел всегда равен 1, будет ошибкой.

Число, даже очень близкое к 1, при возведении в выокую степень существенно возрастает. Так, при инфляции 10% в год, за 20 лет цена будет почти в 7 раз больше: = 6,7275. А если 15% в год, то за 20 лет в 16 раз больше: = 16,36654.

Докажем, используя некоторые ранее полученные пределы, чтобы понять, каким образом в этом пределе появляется число e.

Возьмём выражение , запишем как .По свойству логарифма, . Возведём в степень e:

, то есть .

Если ввести замену , то получим . Если здесь выбрать значения только для целых абсцисс, то получится .

Следствия из 2-го замечательного предела.

,,,.

Вообще, с помощью 2 замечательного предела можно раскрывать неопределённости вида .

Пример. Вычислить предел .

Решение. Заметим, что если отдельно рассмотреть основание, видно, что оно стремится к 1 (там получается 3/3). Степень стремится к бесконечности. Таким образом, здесь есть неопределённость вида , и можно применять 2-й замечательный предел.

Выделим целую часть этой неправильно дроби. Это можно сделать так: вписать перед дробью +1, а после неё (-1). Затем привести к общему знаменателю всё, что после первой единицы, то есть второй и третий элементы.

= =

= .

Обратите внимание, что само собой автоматически получилось, что после 1 такая дробь, которая стремится к 0. Это и должно было получиться, ведь всё основание стремится к 1. Теперь нужно в степени искусственно домножить на дробь, обратную к той, что в основании следует после единицы. Но чтобы степень в примере не изменилась, надо компенсировать домножением и на саму эту дробь, а не только на обратную.

= В больших скобках получилось выражение типа , его предел равен e. Таким образом,

осталось найти = = = .

Чтобы степени было видно крупнее, можно записать через exp(A) вместо eA.

= . Итак, .

 

* Замечание. Если основание стремится не к 1, а к другому числу, то второй замечательный предел можно и не использовать. Так, если то предел равен 0, если то .

, . Неопределённость возникает только в том случае, когда основание стремится к 1.

 

 





Поделиться с друзьями:


Дата добавления: 2016-12-18; Мы поможем в написании ваших работ!; просмотров: 243 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2484 - | 2299 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.