Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Производная сложной функции




Если у есть функция от и: у = f(u), где и в свою очередь есть функция от аргумента х: u = φ(x), т.е. если у зависит от х через промежуточный аргумент и, то у называется сложной функцией от х (функцией от функции): y = f(φ(x)).

Производная сложной функции равна произведению ее производной по промежуточному аргументу на производную этого аргумента по независимой переменной:

y’x = y’u u’x

Таблица производных:

Функция у Производная у’
  С  
  x  
  un n∙un-1 u’
 
 
  eu eu∙u’
  au au ∙ln au’
  ln u
  loga u
  sin u cos u∙u’
  cos u – sin u∙u’
  tg u
  ctg u
  arcsin u
  arcos u
  arctg u
  arcctg u

Решение. а) у = х + 2

Используя правило дифференцирования (3) и формулы (1), (2), имеем:

у' = (x + 2) = (x) + (2) = 1 + 0 = 1.

б). y = (2 x – 3)(3 x + 2)

y’ = ((2 x – 3)(3 x + 2)) = (2 x – 3) ∙(3 x + 2) + (2 x – 3)∙(3 x + 2) = 2∙(3 x + 2) + (2 x – 3)∙3 = 12 x – 5. Здесь мы использовали правило дифференцирования (5).

в) у =

Используя правило дифференцирования (7), имеем

г) у =

Найдем производную, используя правило дифференцирования (4) и формулу (3).

у' = .

д) у = (x 3 – 2 x 2 + 5)6

Пусть x 3 – 2 x 2 + 5 = и, тогда у = и 6. По формуле (3), получим у’ = (и 6) = 6 u 5u’ = 6(x 3 – 2 x 2 + 5)5∙(x 3 – 2 x 2 + 5) = 6(x 3 – 2 x 2 + 5)5∙(3 x 2 – 4 x).

е)

По правилу дифференцирования (7) и формуле (10) получим:

= .

ж)

Используя формулы (4) и (10), имеем:

.

з) y = tg(3 x 2 – 1).

По формуле (12) имеем:

y' = (tg(3 x 2 – 1)) = .

и) .

По формуле (8), а также (3), (4), (5) имеем:

=

= .

 

9. Найти наибольшее и наименьшее значения функции у = х 3 – 12 х на отрезке [0, 5].

Решение. Сначала найдем производную функции: у’ = 3 х 2 – 12.

Затем найдем критические точки, т.е. точки, в которых у’ = 0 или не существует: 3 х 2 – 12 = 0, откуда критические точки х 1 = –2, х 2 = 2. Точка х 1 = –2 не принадлежит отрезку [0, 5], поэтому мы исключаем ее из рассмотрения.

Вычислим значения функции в критической точке х 2 = 2 и на концах интервала и выберем из них наибольшее и наименьшее: у (2) = – 16, у (0) = 0, у (5) = 65.

Ответ: Наибольшее значение функции на отрезке [0, 5] равно 65, наименьшее значение равно –16.

10. Исследовать функцию у = и построить ее график.

Решение. а) Найдем область определения функции.

Областью определения этой функции является вся действительная ось, за исключением двух точек х 1 = –2 и х 2 = 2, в которых имеет место разрыв (знаменатель х 2 – 4 = 0). Т.о. область определения: (-∞; -2)U(-2; 2)U(2; +∞)

б) Исследуем функцию на четность-нечетность.

Функция четная, т.к. у(-х) = = у(х). Четность функции определяет симметрию ее графика относительно оси Оу.

в) Найдем вертикальные асимптоты графика функции.

Вертикальные асимптоты следует искать в точках разрыва функции или на границе ее области определения. Точками разрыва являются х 1 = –2 и х 2 = 2.

Вычислим пределы функции в окрестностях этих точек.

Предел слева , предел справа .

Аналогично , .

Следовательно, прямые х = –2 и х = 2 являются вертикальными асимптотами функции.

г) Найдем горизонтальные или наклонные асимптоты графика функции.

Для этого вычислим пределы: и . Откуда (по формуле y = kx +b) заключаем, что уравнение горизонтальной асимптоты имеет вид: y = 0 x + 1, т.е. у = 1.

д) Найдем экстремумы и интервалы монотонности.

Производная заданной функции у’ = равна нулю (у’ = 0) при х= 0 и не существует при х = ±2. Но критической является только точка х= 0 (т.к. значения х = ±2 не входят в область определения функции). Поскольку при x < 0 f’(x) > 0, а при x > 0 f’(x) < 0, то х= 0 – точка максимума функции и f mах (x) = = – 1.

На интервалах (–∞; –2) и (–2; 0) y' +

функция возрастает , на интервалах -2 0 2 x

(0; 2) и (2; +∞) –. убывает y

е) Найдем интервалы выпуклости и точки перегиба.

Для этого надо найти вторую производную функции . Видно, что уравнение не имеет действительных корней, и это исключает существование у графика точек перегиба. Вместе с тем по корням знаменателя (–2 и 2) можно установить, что при переходе через эти значения х знаки меняются.

На интервалах (–∞; –2) и (2; +∞) функция выпукла вниз, на интервале (–2; 2) – выпукла вверх.

ж) Найдем точки пересечения с осями координат.

f(0) = = – 1, т.е. точка пересечения с осью ординат (0; -1). Уравнение f(х) = 0, (т.е. = 0), решений не имеет, следовательно, график функции не пересекает ось абсцисс.

На основании полученных данных построим график заданной функции.

у

 

 

 

-2 2 х

-1

 

11. Вычислить приближенно, используя дифференциал функции .

Решение. Для приближенных вычислений воспользуемся формулой:

.

Положим . Найдем производную . Тогда . Учитывая, что , возьмем и .

Тогда:

Ответ:

12. Найти неопределенный интеграл:

а) ; б) ; в) ; г) .

Справочный материал

Функция F(x) называется первообразной для функции f(x), если (F(x))’ = f(x).

Первообразная определена неоднозначно: если F(x) – первообразная для функции f(x), то F(x)+C – также первообразная для данной функции.

Множество всех первообразных для функции f(x) называется неопределенным интегралом и обозначается , где f(x) – подынтегральная функция, f(x)dx – подынтегральное выражение, С – произвольная постоянная (С = const), - знак операции интегрирования, d – знак операции дифференцирования.

Свойства неопределенного интеграла:

1. , где с = const.

2. .

3. .

Таблица 1 (неопределенных интегралов)

1. 2. 3. n ≠ –1; 4. ; 5. ; 6. ; 7. ; 8. ; 9. ; 10. 11. ; 12. (| x |< a, a ≠0); 13. (a ≠0); 14. (| x |≠ a, a ≠0); 15. .

 

Решение. а)

Чтобы найти данный неопределенный интеграл, воспользуемся методом разложения, который заключается в разложении подынтегральной функции на сумму функций и использовании свойств неопределенного интеграла 1 и 2.

= = =(св-во 2) =

= = (св-во 1) = =(используем формулы 3 и 4 из таблицы 1 н.и.)= =

= .

Ответ: = .

 

б) .

Данный интеграл вычисляется методом замены переменной (линейная замена). Обозначим выражение в скобках через t: 3 х – 1 = t, тогда d (3 х – 1)= dt => 3 dх = dt => .

= = = (по формуле 3 из таблицы 1 н.и.) = = = = .

Ответ: = .

 

в) .

Здесь при вычислении интеграла используется также метод замены переменной (нелинейная замена).

= = = = = (используем формулу 4 из табл.1 н.и.) = = .

Ответ: = .

 

г) .

Для решения этого примера нужно использовать метод интегрирования по частям.

Формула интегрирования по частям имеет вид: .

Этот метод применяется для двух групп интегралов:

I. ; ; (где ). В этой группе в качестве u выбирают х, а остальная часть подынтегрального выражения принимается за dv ().

II. ; ; ; ; (где ). В этой группе .

В нашем случае интеграл относится к первой группе интегралов, поэтому в качестве u возьмем 5 х – 2 (u = 5 х – 2), а dv = e 3 xdx.

= =

(по формуле интегрирования по частям) = =

= .

Ответ: = .

13. Вычислить определенные интегралы:

а) ; б) .

Справочный материал

Для вычисления определенных интегралов используется формула Ньютона-Лейбница:

.

(где а – нижний предел интегрирования, b – верхний предел, F (x) – первообразная для функции f (x). Для нахождения первообразной F (x) используются те же методы, что и при вычислении неопределенных интегралов).

Решение.

а) = (формула 9 табл. 1 н.и.) = = .

Ответ: = .

б) Используем метод замены переменной: = =

= = (по формуле 3 табл.1 н.и.)= = = (т.к. ln1 = 0)= = .

Ответ: = .

Замечание: В отличие от метода замены для неопределенных интегралов, для определенных интегралов нет необходимости возвращаться к старой переменной интегрирования (х), если перейти к новым пределам интегрирования (в нашем примере старыми пределами были а = 0, b = , а новыми стали а = 1, b = ).

14. Бросают два игральных кубика. Какова вероятность того, что сумма цифр, выпавших на гранях кубика, будет четной и при этом хотя бы на одной из них появится цифра пять.

Решение. Каждый из шести исходов бросания одного кубика может сочетаться с каждым из шести исходов бросания другого кубика. Таким образом, общее число элементарных исходов испытания равно Благоприятствующими интересующему нас событию являются следующие пять исходов: Следовательно, искомая вероятность равна

15. Пользователь разыскивает нужную информацию в трех базах данных. Вероятности того, что информация содержится в й, й, й базе, соответственно равны: ; ; . Используя теоремы сложения и умножения вероятностей, найти вероятность того, что информация содержится: а) только в одной базе; б) хотя бы в двух базах; в) только во 2-й и 3-й базах.

Решение

а). Введем обозначения: событие информация содержится в й базе; событие информация не содержится в й базе; событие информация содержится только в одной базе; событие информация содержится хотя бы в двух базах; событие информация содержится только во 2-й и 3-й базах.

Вероятности событий равны .

Рассмотрим событие . Информация содержится только в одной базе тогда, когда:

она содержится в первой и не содержится во второй и третьей

или

она содержится во второй и не содержится в первой и третьей,

или

она содержится в третьей и не содержится во первой и второй.

Тогда событие можно представить так . Здесь первое слагаемое – это произведение наступившего события и двух других, не наступивших событий и . Аналогично определяются второе и третье слагаемое.

Применяя теорему сложения вероятностей для несовместных событий и теорему умножения для независимых событий, получим:

б) Событие наступает тогда, когда не наступает одно из двух событий:

информация не содержится ни в одной из баз (событие );

информация содержится только в одной базе (событие ).

Тогда

.

в) Событие легко выписывается через произведение вероятностей: , тогда

.

16. Вероятность появления события в каждом из независимых испытаний равна . Найти вероятность того, что в независимых испытаниях событие появится: а) точно раз; б) не менее раз и не более раз.

Решение

а) По условию , . Используем локальную теорему Муавра-Лапласа: , . Найдем . По таблице для функции Гаусса:

определим значение . Искомая вероятность

б) По условию , . Используем интегральную теорему Муавра-Лапласа:

,

где , , – интеграл Лапласа.

В нашем случае и . По таблице определим значение и . Следовательно, .

17. Средний рост солдат равен Предположим, что рост является нормально распределенной случайной величиной с параметрами , . Определить число солдат в группе, рост которых: а) больше 1,9 м; б) между и .

Решение.

а) Для решения воспользуемся формулой:

Подставив , получаем:

.

По таблице находим .

Следовательно, Таким образом, доля солдат с ростом выше 1,9 м равна 4,56%. То есть, среди солдат ожидаемое число солдат с ростом выше 1,9 м будет равно

б) Для решения воспользуемся формулой:

Подставив , получаем:

.

По таблице находим

Следовательно, Таким образом, доля солдат с ростом от 1,75 до 1,85 м равна 68,26%. Таким образом, среди солдат ожидаемое число солдат с интересующим нас ростом будет равно

 





Поделиться с друзьями:


Дата добавления: 2016-12-17; Мы поможем в написании ваших работ!; просмотров: 325 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2644 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.