Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Выражение векторного произведения через координаты векторов.




Мы будем использовать таблицу векторного произведения векторов i, jи k:

если направление кратчайшего пути от первого вектора к второму совпадает с направлением стрелки, то произведение равно третьему вектору, если не совпадает — третий вектор берется со знаком «минус».

Пусть заданы два вектора а=ахi +ayj +azkи b =bxi +byj +bzk. Найдем векторное произведение этих векторов, перемножая их как многочлены (согласно свойств векторного произведения):

ó

Полученную формулу можно записать еще короче:

так как правая часть равенства (7.1) соответствует разложению определителя третьего порядка по элементам первой строки. Равенство (7.2) легко запоминается.

25. Смешанное произведение трёх векторов.

Рассмотрим произведение векторов а, b и с, составленное следующим образом: (ахb)•с. Здесь первые два вектора перемножаются векторно, а их результат скалярно на третий вектор. Такое произведение называется векторноскалярным, или смешанным, произведением трех векторов. Смешанное произведение представляет собой некоторое число.

Выясним геометрический смысл выражения (ахb)*с. Построим параллелепипед, ребрами которого являются векторы а, b, с и вектор d =ахb(см. рис. 22).

Имеем: (а х b) • с = d • с = |d| • прdс, |d|=|а х b| =S, где S — площадь параллелограмма, построенного на векторах а и b, прdс = Н Для правой тройки векторов и прdс = - Н для левой, где Н— высота параллелепипеда. Получаем: (axb)*c =S *(±H), т. е. (axb)*c =±V, где V — объем параллелепипеда, образованного векторами а, bи с.

Таким образом, смешанное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах, взятому со знаком «плюс», если эти векторы образуют правую тройку, и со знаком «минус», если они образуют левую тройку.

Свойства смешанного произведения

1. Смешанное произведение не меняется при циклической перестановке его сомножителей, т. е. (ахb)•с=(bхс)•а=(сха)•b.

Действительно, в этом случае не изменяется ни объем параллелепипеда, ни ориентация его ребер.

2. Смешанное произведение не меняется при перемене местами знаков векторного и скалярного умножения, т. е. (ахb)•с=а*(bxс).

Действительно, (ахb)•с=±V и а•(b хс)=(bхс)•а=±V. Знак в правой части этих равенств берем один и тот же, так как тройки векторов а, b, с и b, с, а — одной ориентации.

Следовательно, (aхb)•с=a (bхс). Это позволяет записывать смешанное произведение векторов (а х b)с в виде abc без знаков векторного, скалярного умножения.

3. Смешанное произведение меняет свой знак при перемене мест любых вух векторов-сомножителей, т. е. abc =-acb, abc =-bac, abc =-cba.

Действительно, такая перестановка равносильна перестановке сомножителей в векторном произведении, меняющей у произведения знак.

4.Смешанное произведение ненулевых векторов а, b и с равно нулю огда и только тогда, когда они компланарны.

Если abc =0, то а, b и с— компланарны.

Допустим, что это не так. Можно было бы построить параллелепипед с объемом V¹ 0. Но так как abc =±V, то получили бы, что abc¹0. Это противоречит условию: abc =0.

Обратно, пусть векторы а, b, с — компланарны. Тогда вектор d =ахbбудет перпендикулярен плоскости, в которой лежат векторы а, b,с, и следовательно, d^с. Поэтому d •с=0, т. е. abc =0.





Поделиться с друзьями:


Дата добавления: 2016-12-18; Мы поможем в написании ваших работ!; просмотров: 737 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2418 - | 2130 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.