Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Функция. Способы ее задания




Вернемся к независимым и зависимым переменным. Независимую переменную часто называют аргументом, зависимую – функцией.

Определение 1. Если каждому элементу некоторого множества ставится в соответствие элемент множества , говорят, что на множестве задана функция , здесь определяет закон, с помощью которого осуществляется это соответствие.

Примеры , .

Функция может быть задана в виде

· Таблицы,

· Графика,

· Формулы (аналитически).

В качестве примера приведена функция, аналитическое задание которой , табличное и графическое ее задание приведено ниже.

x   1.5   2.5      
y   2.25   6.25      

 

Аналитически функцию можно задать

· в явном виде (явное задание функции), когда из формулы следует, что переменная зависит , то есть является функцией аргумента ;

· неявно , когда любая из переменных может считаться независимой, тогда другая переменная является функцией. Пример неявного задания функции . Нетрудно заметить, что эта формула задает фактически две непрерывные функции и . Первая функция представляет верхнюю полуокружность, вторая – нижнюю ее часть.

· параметрически (параметрическое задание функции) , когда вводится дополнительный параметр . Исторически параметр t был связан со временем. Тогда параметрическое задание функции дает возможность не только установить, на какой линии находится точка, но и в каком месте этой линии она находится в заданный момент времени.

X
Y
A
B
Пример. . Нетрудно установить, что это параметрическое уравнение эллипса . При имеем правую крайнюю точку эллипса A , при находимся в точке B , то есть в верхней точке эллипса и т.д. Таким образом, параметрическое задание дает большую информацию о функции, чем другие аналитические ее представления.

X
Y
A
B

 

 


Определение 2. Множество называется областью существования функции, или областью ее задания. Область существования функции может быть шире, чем область ее задания. То есть функция может существовать на всей числовой оси, а используется она при .

Определение 3. Множество называется областью значений функции.

Определение 4. Любое подмножество числовой оси называется промежутком. Открытый промежуток, не включающий граничных точек, называется интервалом и обозначается или . Замкнутый промежуток, содержащий все внутренние и граничные точки, называется отрезком и обозначается или . Имеют место также полуинтервалы и . В первом случае в полуинтервал входит только левая граничная точка, во втором – только правая.

У функции область существования вся числовая ось то есть , область значений . У функции область существования или , область значений также . У функции область существования , область значений .

Вопрос 28.





Поделиться с друзьями:


Дата добавления: 2016-12-18; Мы поможем в написании ваших работ!; просмотров: 470 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2245 - | 2198 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.