СЛУЧАЙНЫЕ ВЕЛИЧИНЫ
Понятие случайной величины является основным в теории вероятностей и ее приложениях. Случайными величинами, например, являются число выпавших очков при однократном бросании игральной кости, число распавшихся атомов радия за данный промежуток времени, число вызовов на телефонной станции за некоторый промежуток времени, отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе и т. д.
Таким образом, случайной величиной называется переменная величина, которая в результате опыта может принимать то или иное числовое значение.
В дальнейшем мы рассмотрим два типа случайных величин — дискретные и непрерывные.
1. Дискретные случайные величины.
Рассмотрим случайную величину * , возможные значения которой образуют конечную или бесконечную последовательность чисел x1, x2,..., xn,.... Пусть задана функция p(x), значение которой в каждой точке x=xi (i=1,2,...) равно вероятности того, что величина примет значение xi
(16)
Такая случайная величина называется дискретной (прерывной). Функция р(х) называется законом распределения вероятностей случайной величины, или кратко, законом распределения. Эта функция определена в точках последовательности x1, x2,..., xn,.... Так как в каждом из испытаний случайная величина принимает всегда какое-либо значение из области ее изменения, то
Задание дискретной случайной величины. Параметры дискретной величины.
Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и вероятностями их появления.
Закон распределения можно задать таблично, аналитически (в виде формулы) или графически (в виде многоугольника распределения).
Рассмотрим случайную величину X, которая принимает значения x1, x2, x3... xn с некоторой вероятностью pi, где i = 1.. n. Сумма вероятностей pi равна 1.
Таблица соответствия значений случайной величины и их вероятностей вида
x1 x2 x3... xn...
p1 p2 p3 pn
называется рядом распределения дискретной случайной величины или просто рядом распределения. Эта таблица является наиболее удобной формой задания дискретной случайной величины.
Графическое представление этой таблицы называется многоугольником распределения. По оси абсцисс откладываются возможные значения дискретной случайной величины, а по оси ординат соответствующие вероятности.
Числовые характеристики дискретных случайных величин
Закон распределения полностью характеризует дискретную случайную величину. Однако, когда невозможно определить закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины:
1)Математическое ожидание,
2)Дисперсия,
3)Среднее квадратичное отклонение
Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.
Математическое ожидание M дискретной случайной величины - это среднее значение случайной величины, равное сумме произведений всех возможных значений случайной величины на их вероятности
Свойства математического ожидания:
1)Математическое ожидание постоянной величины равно самой постоянной.
2)Постоянный множитель можно выносить за знак математического ожидания.
3)Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.
4)Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых
Для описания многих практически важных свойств случайной величины необходимо знание не только ее математического ожидания, но и отклонения возможных ее значений от среднего значения.
Дисперсия случайной величины — мера разброса случайной величины, равная математическому ожиданию квадрата отклонения случайной величины от ее математического ожидания.
Принимая во внимание свойства математического ожидания, легко показать что
Казалось бы естественным рассматривать не квадрат отклонения случайной величины от ее математического ожидания, а просто отклонение. Однако математическое ожидание этого отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль. Можно было бы принять за меру рассеяния математическое ожидание модуля отклонения случайной величины от ее математического ожидания, но как правило, действия связанные с абсолютными величинами, приводят к громоздким вычислениям.
Свойства дисперсии:
1)Дисперсия постоянной равна нулю.
2)Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат.
3)Если x и y независимые случайные величины, то дисперсия суммы этих величин равна сумме их дисперсий.
Средним квадратическим отклонением случайной величины (иногда применяется термин «стандартное отклонение случайной величины») называется число равное
Среднее квадратическое отклонение, следовательно, является, как и дисперсия, мерой рассеяния распределения, но измеряется, в отличие от дисперсии, в тех же единицах, которые используют для измерения значений случайной величины.
Повторение испытаний. Формула Бернулли. Вероятность того, что при случайном броске монета ляжет гербом кверху равняется 1/2. Значит, зная вероятность события, мы можем предсказать, что при стократном бросании монеты герб появится 50 раз? Не обязательно точно 50. Но что-нибудь около этого непременно.Якоб Бернулли (1654-1705) строго доказал - вероятность того, что событие А наступит ровно k раз при проведении независимых n испытаний равна
где p - вероятность наступления события А, q - вероятность наступленияпротивоположного события.