Несгораемые материалы - материалы, которые под действием огня или высоких температур не воспламеняются, не тлеют и не обугливаются, но могут сильно деформироваться.
Трудносгораемые материалы - материалы, которые под действием огня тлеют и обугливаются, но после удаления источника огня эти процессы прекращаются.
Сгораемые материалы - материалы, которые под действием огня воспламеняются или тлеют и продолжают гореть или тлеть и после удаления источника огня.
Огнестойкость - способность изделия, конструкции или элемента сооружения сохранять при пожаре несущую и огнепреграждающую способность.
Повышение огнестойкости конструкций до требуемого уровня осуществляется с помощью соответствующей огнезащиты:
а) бетонирование, оштукатуривание, обкладка кирпичом – конструктивный способ;
б) облицовка объекта огнезащиты штатными материалами или установка огнезащитных экранов на относе
в) нанесение непосредственно на поверхность объекта огнезащитных покрытий (окраска, обмазка, напыление);
г) пропитка подповерхностных слоев конструкций огнезащитным составом;
д) комбинированный (композиционный) способ, представляющий собой рациональное сочетание различных способов.
Химическое самовозгорание веществ. Причины и профилактика
Х имическое самовозгорание связано со способностью веществ и материалов вступать в химическую реакцию с воздухом или другими окислителями при нормальных условиях с выделением теплоты, достаточной для их возгорания. Наиболее характерными примерами являются случаи самовозгорания промасленной ветоши или фосфора на воздухе, легковоспламеняющихся жидкостей при контакте с марганцовкой, древесных опилок с кислотами. Д ругой вид химических реакций веществ связан с взаимодействием воды или влаги. При этом также выделяется достаточная для самовозгорания веществ и материалов температура. Примерами могут служить такие вещества, как калий, натрий, карбид кальция, негашеная известь. Особенностью щелочноземельных металлов является их способность гореть и без доступа кислорода. Необходимый для реакции кислород они добывают сами, расщепляя под действием высокой температуры влагу воздуха на водород и кислород. Вот почему тушение водой таких веществ приводит к взрыву образующегося водорода.
4. Пена как средство пожаротушения
Воздушно-механическая пена как средство пожаротушения состоит из пузырьков газа, оболочка которых содержит 3-5%й водный раствор пенообразователя. Пены применяют для тушения твердых и жидких горючих веществ, не вступающих во взаимодействие с водой, и в первую очередь для тушения нефтепродуктов. Пожаротушащий эффект пены основан на охлаждении очага пожара водой, а так же частичном изолировании зоны горения от доступа свежего воздуха.
К достоинствам пены как средства пожаротушения можно отнести длительность сохранения пеной своей структуры и объема, что позволяет производить как площадное так и объемное пожаротушение; возможность дистанционного воздействия на очаг пожара; способность пены перемещаться на значительные расстояния и проникать в труднодоступные места
Огнетушащие свойства пены в большой степени определяются её кратностью и стойкостью. Кратность - отношение объема пены к объему жидкой фазы. Стойкость - сопротивляемость пены процессу разрушения и оценивается продолжительностью выделения из пены 50% жидкой фазы. С повышением кратности пены стойкость снижается. Стойкость пены средней кратности составляет порядка 2х часов. Стойкость может быть повышена путем введения стабилизирующих добавок. Пена электропроводна, поэтому тушить ею установки под напряжением запрещается.
5. Пожарная опасность открытого пламени, газов, искр. Причины возникновения и профилактика.
Пожарная опасность промышленных или гражданских объектов – возможность возникновения и развития пожара, а также его последствия, определяемые опасными для людей факторами и нанесенным материальным ущербом. Пожарная опасность объектов определяется пожарной опасностью применяемых веществ и материалов, условиями их использования, параметрами и особенностями технологических процессов, пожарной нагрузкой, а также объемно-планировочными и конструктивными параметрами самих объектов. Пожарная опасность веществ и материалов характеризуется их способностью к распространению пламени концентрационными и температурными пределами воспламенения и другими показателями - вспышками температуры, температурами воспламенения, самовоспламенения и тления, склонностью к самовозгоранию. Самый опасный источник пожара – открытое пламя, вызывающее зажигание различных горючих систем практически во всех случаях. Поэтому при необходимости проведения ремонтных огневых работ предусмотрены особые меры предосторожности.
Наиболее распространенные источники зажигания – электрические разряды, поэтому требования к электрооборудованию строго регламентированы. Искры, образуемые при разрядах статического электричества, также могут быть источником зажигания. Накопление электрических зарядов происходит при трении материалов. Для защиты от статической электризации предусмотрены меры по предотвращению образования зарядов - ограничение скоростей перемещения диэлектриков по трубопроводам, очистка газовых потоков от твердых частиц, заземление технологического оборудования, применение антистатиков и их быстрой нейтрализации - увлажнение среды, ионизация воздуха. Искры, возникающие в результате трения и удара, представляют собой горящие частицы, отрываемые при механических воздействиях на твердые материалы. При этом искры от удара более опасны, чем искры от трения. Опасность механических искр определяется природой трущихся или соударяемых материалов. Наиболее опасны углеродосодержащие материалы и их сплавы. Для предупреждения образования механических искр во взрывоопасных цехах допускается применение лишь омедненного или луженого инструмента, а трущиеся части машин должны быть выполнены из разнородных материалов. В таких помещениях полы изготовляют из неискрящих материалов, а обслуживающий персонал может находиться только в специальной обуви, подбитой медными гвоздями.
6. Классификация производств по степени пожаро- и взрывоопасности
А взрыво- пожароопасная
Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28° С в таком количестве, что могут образовывать взрывоопасные парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа. Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или один с другим в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5кПа.
Б взрыво- пожароопасная
Горючие пыли или волокна, легковоспламеняющиеся жидкости с температурой вспышки более 28° С, горючие жидкости в таком количестве, что могут образовывать взрывоопасные пыле- или паро-воздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа.
В1 - В4 пожароопасная
Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы, способные при взаимодействии с водой, кислородом воздуха или один с другим только гореть при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А или Б
Г
Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени, горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива
Д
Негорючие вещества и материалы в холодном состоянии
7. Классификация пыли и горючих веществ
Вещества, способные самостоятельно гореть после удаления источника зажигания, называются горючими в отличие от веществ, которые на воздухе не горят и называются негорючими. Промежуточное положение занимают трудно горючие вещества, которые возгораются при действии источника зажигания, но прекращают горение после удаления последнего.
Все горючие вещества делятся на следующие основные группы.
1. ГОРЮЧИЕ ГАЗЫ (ГГ) - вещества, способные образовывать с воздухом воспламеняемые и взрывоопасные смеси при температурах не выше 50° С. К горючим газам относятся индивидуальные вещества: аммиак, ацетилен, бутадиен, бутан, бутилацетат, водород, винилхлорид, изобутан, изобутилен, метан, окись углерода, пропан, пропилен, сероводород, формальдегид, а также пары легковоспламеняющихся и горючих жидкостей.
2. ЛЕГКОВОСПЛАМЕНЯЮЩИЕСЯ ЖИДКОСТИ (ЛВЖ) - вещества, способные самостоятельно гореть после удаления источника зажигания и имеющие температуру вспышки не выше 61° С (в закрытом тигле) или 66° (в открытом). К таким жидкостям относятся индивидуальные вещества: ацетон, бензол, гексан, гептан, диметилфорамид, дифтордихлорметан, изопентан, изопропилбензол, ксилол, метиловый спирт, сероуглерод, стирол, уксусная кислота, хлорбензол, циклогексан, этилацетат, этилбензол, этиловый спирт, а также смеси и технические продукты бензин, дизельное топливо, керосин, уайтспирт, растворители.
3. ГОРЮЧИЕ ЖИДКОСТИ (ГЖ) - вещества, способные самостоятельно гореть после удаления источника зажигания и имеющие температуру вспышки выше 61° (в закрытом тигле) или 66° С (в открытом). К горючим жидкостям относятся следующие индивидуальные вещества: анилин, гексадекан, гексиловый спирт, глицерин, этиленгликоль, а также смеси и технические продукты, например, масла: трансформаторное, вазелиновое, касторовое.
4. ГОРЮЧИЕ ПЫЛИ (ГП) - твердые вещества, находящиеся в мелкодисперсном состоянии. Горючая пыль, находящаяся в воздухе (аэрозоль), способна образовывать с ним взрывчатые смеси. Осевшая на стенах, потолке, поверхностях оборудования пыль (аэрогель) пожароопасна.
Горючие пыли по степени взрыво- и пожароопасности делятся на четыре класса.
1-й класс - наиболее взрывоопасные - аэрозоли, имеющие нижний концентрационный предел воспламенения (взрываемости) (НКПВ) до 15 г/м3 (сера, нафталин, канифоль, пыль мельничная, торфяная, эбонитовая).
2-й класс - взрывоопасные - аэрозоли имеющие величину НКПВ от 15 до 65 г/м3 (алюминиевый порошок, лигнин, пыль мучная, сенная, сланцевая).
3-й класс - наиболее пожароопасные - аэрогели, имеющие величину НКПВ, большую 65 г/м3 и температуру самовоспламенения до 250° С (табачная, элеваторная пыль).
4-й класс - пожароопасные - аэрогели, имеющие величину НКПВ большую 65 г/м3 и температуру самовоспламенения, большую 250° С (древесные опилки, цинковая пыль).
Пыль – физическое состояние вещества, характеризующее степень его раздробленности. Производственная деятельность сопровождается образованием пыли. Пыль классифицируется по следующим признакам:
· По способу образования – аэрозоль и аэрогель. С точки зрения гигиенического воздействия наиболее опасна аэрозоль, а с точки зрения пожароопасности – аэрогель.
· По происхождению – органическая, неорганическая, смешанная
· По дисперсности – видимая, микроскопическая, ультрамикроскопическая
Пыль способна электризоваться, что приводит к возникновению пожаров. Также пылевыделения имеют другие отрицательные стороны – наносят экологический, экономический ущерб, ухудшает санитарное состояние производственной среды, ухудшает производственное освещение. Контроль количества пыли осуществляется методом определения ее массы и размера частиц.
8. Углекислотные огнетушители
Углекислотный огнетушитель – аппарат, огнегасящие свойства которого – углекислота – представляет химическое соединение углерода и кислорода. Это газ является инертным, он не поддерживает горение. Выпущенной из баллона жидкой, углекислота мгновенно превращается в газ, увеличиваясь в объеме в 400-500 раз. В твердое, снегообразное состояние углекислота переходит при выпуске ее под большим давлением. Образованию снежных хлопьев способствует быстрое испарение и охлаждение паров углекислоты. Часть углекислоты выходит в виде снега, часть - в виде тумана.
Огнегасительные свойства углекислоты заключаются в том, что она, являясь газом, уменьшает процентное содержание кислорода в очаге горения и изолирует его от притока воздуха. Углекислотный снег уменьшает температуру горящих предметов и окружающего воздуха. Углекислота применяется для тушения твердых и горючих веществ. Не являясь электропроводной, она также используется в тушении проводок. Но углекислота нестойкое вещество, легко уносится от пожара восходящими потоками воздуха, не обладает смачивающими свойства и является токсичным веществом. Поэтому ее нельзя использовать в людских помещениях в больших количествах.
Углекислотный огнетушитель представляет собой стальной баллон, в горловину которого ввернут вентиль из латуни, имеющий сифонную трубку. Вентиль огнетушителя – запорно-пусковое устройство. Чтобы привести в действие огнетушитель, необходимо вращать маховик до отказа, направляя раструб в очаг горения. Время непрерывного действия – 30 сек., тушить с расстояния 1 - 2 метра.
9. Огнегасящие свойства воды, пены, инертных газов
Вода охлаждает горящий предмет до температуры, ниже чем температура его самовоспламенения. Водяной пар, смешиваясь с горючими газами, понижает их концентрацию, препятствую полному сгоранию газа и понижает температуру. В процессе тушения пожара вода попадает на неохваченные огнем части, затрудняя их возгорание. Сильная струя воды сбивает горящие частицы, проникая внутрь раскаленной массы, охлаждает ее. Водой тушат большинство твердых горючих веществ. В виде распыленной струи водой тушат твердые тела, жидкости и газы. В некоторые вещества вода не проникает. Электроустановки и проводку водой тушить нельзя, т.к. она является проводником. Нельзя тушить водой такие химические вещества, как карбид кальция, калий и натрий, вступающие с водой в реакцию окисления.
Химическая пена также является средством пожаротушения, обладая огнегасящими свойствами. Принцип получения химической пены – реакция смешения кислотной и щелочной частей в заряде огнетушителя. Кислота и щелочь, вступая в реакцию, выделяют много углекислого газа. Пена очень легка, что позволяет ей удерживаться на поверхности горящих веществ, в том числе и жидкостей. Пена на поверхности горящего вещества не только снижает его температуру, но и препятствует доступу кислорода. При тушении жидкостей слой пены тормозит выделение паров и горение прекращается. Струю пены следует направлять не в центр горящей жидкости, а по поверхности, начиная с краев.
Инертный газ – химическое соединение, не поддерживающее горение. Одним из примеров инертного газа является углекислота, образованная при соединении углерода и кислорода.
10. Пожарная профилактика при проектировании и строительстве промышленных предприятий
Пожары и взрывы на объектах экономики и в жилых домах представляют большую опасность для персонала этих объектов и населения и могут причинить огромный материальный ущерб. Вопросы обеспечения пожарной безопасности производственных и жилых зданий и сооружений имеют большое значение и регламентируются специальными государственными решениями и постановлениями. Пожарная безопасность может быть обеспечена мерами пожарной профилактики и активной пожарной защиты.
Понятие пожарной профилактики включает в себя комплекс мероприятий, направленных на предупреждение возникновения пожара и создание условий для предотвращения ущерба от них. Под активной пожарной защитой понимаются меры, обеспечивающие успешную борьбу с возникающими пожарами или взрывоопасной ситуацией.
Анализ имевших место на объектах экономики крупных пожарах показал что при пожаре на этих предприятиях создаётся сложная обстановка для пожаротушения, поэтому требуется разработка комплекса мероприятий но противопожарной защите. Этот комплекс включает мероприятия профилактического характера и устройство систем пожаротушения. Пожарная профилактика является составной частью технологических процессов производства, градостроительства, планировки и застройки населенных пунктов. Её мероприятия учитываются при проектировании, строительстве, реконструкции, эксплуатации объектов, зданий, сооружений, транспортных средств и в быту. Организацией пожарной профилактики занимаются органы Государственного пожарного надзора.
Пожарная профилактика достигается:
- разработкой, внедрением пожарных норм и правил на объектах и контролем за их соблюдением;
- ведением конструирования и проектирования создаваемых объектов с учётом их пожарной безопасности;
- совершенствованием и содержанием в готовности противопожарных средств;
- регулярным проведением пожарно-технических обследований объектов, жилых и общественных зданий;
- пропагандой пожарно-технических знаний среди населения.
Мероприятия по пожарной профилактике разделяются на организационные, технические, режимные и эксплуатационные.
Организационные мероприятия предусматривают:
- правильную эксплуатацию оборудования и транспорта;
- правильное содержание зданий и сооружений, территории;
- противопожарный инструктаж рабочих и служащих объекта;
- организацию добровольных пожарных формирований, пожарно-технических комиссий;
- издание приказов по вопросам усиления пожарных формирований и т.д.
К техническим мероприятиям относятся:
- соблюдение противопожарных правил и норм при проектировании зданий, устройстве электропроводов и оборудования, отопления, вентиляции, освещения;
- правильное размещение оборудования.
Мероприятия режимного характера - это запрещение курения в неустановленных местах производства сварочных и других огневых работ в пожароопасных помещениях.
Эксплуатационными мероприятиями являются своевременные профилактические осмотры, ремонты и испытания технологического оборудования.
Пожарная профилактика на промышленных объектах организуется на основе общих требований ко всем объектам, а также в соответствии с категорией пожарной опасности технологических процессов на каждом из них.
Повысить огнестойкость зданий и сооружений можно облицовкой или оштукатуриванием металлических конструкций, защитой деревянных конструкций оштукатуриванием (известково-цементное, асбоцементное, гипсовое покрытие или пропитывание их антипиренами (фосфорно-кислый аммоний, сернокислый аммоний) или огнезащитными красками;
- устройство противопожарных разрывов между зданиями. Величины противопожарных разрывов между основными и вспомогательными зданиями определяют с учетом их огнестойкости они могут находиться в пределах от 9 до 18 метров;
- зонирование территории. Это мероприятие заключается в группировании при генеральной планировке предприятий в отдельные комплексы объектов, родственных по функциональному назначению и признаку пожарной опасности.
Для таких комплексов на промышленной площадке отводят определенные участки. Сооружения с повышенной пожарной опасностью располагают с подветренной стороны, склады ЛВЖ и резервуары с горючими веществами располагают на границах объекта или за их пределами в более низких местах;
- устройство внутризаводских дорог, которые должны обеспечивать беспрепятственный удобный проезд пожарных автомобилей к любому зданию объекта; выбор мест расположения пожарных депо. Одна из сторон предприятия должна примыкать к дороге общего пользования или сообщатьсяс ней проездами;
- устройство внутреннего противопожарного водопровода, спринклерных и дренерных установок пожаротушения, пожарной сигнализации;
- замена сгораемых перекрытий на несгораемые;
- установка электрооборудования в пылевлагонепроницаемом исполнении;
- систематизация хранения горючих материалов, создание буферных складов, исключающих накопление горючих материалов на рабочих местах;
- отделение особо опасных технологических участков производства противопожарными преградами (противопожарные стены, перекрытия, люки, двери, ворота, тамбур-шлюзы и окна).
Противопожарные стены выполняются из несгораемых материалов и должны иметь предел огнестойкости не менее 2,5 час. и опираться на фундаменты Противопожарные двери, окна и ворота в противопожарных стенах должны иметь предел огнестойкости не менее 1 часа, а противопожарные перекрытия - не менее I часа. Перекрытия не должны иметь проемов и отверстий, через которые могут проникать в помещение продукты горения при пожаре;
- в чистоте и исправности поддерживаются пути эвакуации людей при пожаре. При возникновении пожара люди должны покинуть здание в минимальное время, которое определяется кратчайшим расстоянием от их место нахождения в здании до наружного выхода. Число эвакуационных выходов из зданий, помещений и каждого этажа здания определяется расчетом, но должно составлять не менее двух. Выходы должны располагаться рассредоточено.
- установление строгого противопожарного режима на объекте.
11. Пожарная опасность электроустановок, электрооборудования.
Классификация электрооборудования по пожаровзрывоопасности и пожарной опасности
1. В зависимости от степени пожаровзрывоопасности и пожарной опасности электрооборудование подразделяется на следующие виды:
1) электрооборудование без средств пожаровзрывозащиты;
2) пожарозащищенное электрооборудование (для пожароопасных зон);
3) взрывозащищенное электрооборудование (для взрывоопасных зон).
2. Под степенью пожаровзрывоопасности и пожарной опасности электрооборудования понимается опасность возникновения источника зажигания внутри электрооборудования и (или) опасность контакта источника зажигания с окружающей электрооборудование горючей средой. Электрооборудование без средств пожаровзрывозащиты по уровням пожарной защиты и взрывозащиты не классифицируется.
Классификация электрооборудования по пожаровзрывоопасности и пожарной опасности применяется для определения области его безопасного применения и соответствующей этой области маркировки электрооборудования, а также для определения требований пожарной безопасности при эксплуатации электрооборудования.
12. Горение Жидкостей
Предприятия, на которых перерабатываются или используются горючие жидкости, представляют собой большую пожарную опасность. Это объясняется тем, что горючие жидкости легко воспламеняются, интенсивнее горят, образуют взрывоопасные паровоздушные смеси и плохо поддаются тушению водой.
Горение жидкостей происходит только в паровой фазе. Скорость испарения и количество паров жидкости зависят от ее природы и температуры. Количество насыщенных паров над поверхностью жидкости зависит от ее температуры и атмосферного давления. В состоянии насыщения число испаряющихся молекул равно числу конденсирующихся, и концентрация пара остается постоянной. Горение паровоздушных смесей возможно только в определенном диапазоне концентраций, т.е. они характеризуются концентрационными пределами распространения пламени (НКПРП и ВКПРП).
Нижние (верхние) концентрационные пределы распространения пламени – минимальное (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания.
Концентрационные пределы могут быть выражены через температуру (при атмосферном давлении). Значения температуры жидкости, при которых концентрация насыщенных паров в воздухе над жидкостью равна концентрационным пределам распространения пламени, называются температурными пределами распространения пламени (воспламенения) (нижним и верхним соответственно – НТПРП и ВТПРП).
Таким образом, процесс воспламенения и горения жидкостей можно представить следующим образом. Для воспламенения необходимо, чтобы жидкость была нагрета до определенной температуры (не меньше нижнего температурного предела распространения пламени). После воспламенения скорость испарения должна быть достаточной для поддержания постоянного горения. Эти особенности горения жидкостей характеризуются температурами вспышки и воспламенения.
В соответствии с ГОСТ 12.1.044 "Пожаровзрывоопасность веществ и материалов", температурой вспышки называется наименьшая температура конденсированного вещества, при которой в условиях специальных испытаний над его поверхностью образуются пары, способные вспыхивать в воздухе от источника зажигания; устойчивое горение при этом не возникает. Температура вспышки соответствует нижнему температурному пределу воспламенения.
Температуру вспышки используют для оценки воспламеняемости жидкости, а также при разработке мероприятий для обеспечения пожаро- и взрывобезопасности ведения технологических процессов.
Температурой воспламенения называется наименьшее значение температуры жидкости, при котором интенсивность испарения ее такова, что после зажигания внешним источником возникает самостоятельное пламенное горение.
В зависимости от численного значения температуры вспышки жидкости подразделяются на легковоспламеняющиеся (ЛВЖ) и горючие (ГЖ).
К легковоспламеняющимся жидкостям относятся жидкости с температурой вспышки не более 61оС в закрытом тигле или 66оС в открытом тигле.
Для ЛВЖ температура воспламенения обычно на 1-5оС выше температуры вспышки, а для горючих жидкостей эта разница может достигать 30-35?С.
В соответствии с ГОСТ 12.1.017-80, в зависимости от температуры вспышки ЛВЖ подразделяются на три разряда.
Особо опасные ЛВЖ – с температурой вспышки от -18оС и ниже в закрытом тигле или от -13оС и ниже в открытом тигле. К особо опасным ЛВЖ относятся ацетон, диэтиловый спирт, изопентан и др.
Постоянно опасные ЛВЖ – это горючие жидкости с темпе-ратурой вспышки от -18оС до +23оС в закрытом тигле или от -13оС до +27оС в открытом тигле. К ним относятся бензил, толуол, этило-вый спирт, этилацетат и др.
Опасные при повышенной температуре ЛВЖ – это горючие жидкости с температурой вспышки от 23оС до 61оС в закрытом тигле. К ним относятся хлорбензол, скипидар, уайт-спирит и др.
Температура вспышки жидкостей, принадлежащих к одному классу (жидкие углеводороды, спирты и др.), закономерно изменяется в гомологическом ряду, повышаясь с увеличением молекулярной массы, температуры кипения и плотности. Температуру вспышки определяют экспериментальным и расчетным путем.
Экспериментально температуру вспышки определяют в при-борах закрытого и открытого типа:
– в закрытом тигле на приборе Мартенса-Пенского по методике, изложенной в ГОСТ 12.1.044-89, – для нефтепродуктов;
– в открытом тигле на приборе ТВ ВНИИПО по методике, приведенной в ГОСТ 12.1.044-89, – для химических органических продуктов и на приборе Бренкена по методике, изложенной в том же ГОСТе, – для нефтепродуктов и масел.
13. Образования статического электричества и пожарная опасность искр от его разрядов
1. Электростатические заряды на производстве и их опасность.
В некоторых отраслях промышленного производства, связанных с обработкой диэлектрических материалов, нефтеперерабатывающей, текстильной, бумажной, и т.д. наблюдаются явления электризации тел – статическое электричество.
По определению ГОСТ 17.1.018-79 «Статическое электричество. Искробезопастность.» термин «статическое электричество» означает совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и в объеме диэлектриков и полупроводников, изделий на изолированных (в том числе диспергированных (лат. dispergo – рассеивать; порошки, эмульсии) в диэлектрической среде) проводниках.
Электризация материалов часто препятствует нормальному ходу технологических процессов производства, а также создает дополнительную пожарную опасность вследствие искрообразования при разрядах при наличии в помещениях, резервуарах и ангарах горючих паро- и газо-воздушных смесей.
Этот же ГОСТ дает определение понятий электростатической искробезопастности (ЭСиБ) как состояние объекта, при котором исключена возможность взрыва и пожара от статического электричества. Электростатическая искробезопастность должна обеспечиваться путем устранения разрядов статического электричества, способных стать источником зажигания огнеопасных веществ (материалов, смесей, изделий, продукции и т.д.)
В ряде случаев статическая электризация тела человека и затем последующий разряд с человека на землю или заземленное производственное оборудование, а также электрический разряд с незаземленного оборудования через тело человека могут вызвать болевые и нервные ощущения и быть причиной непроизвольного резкого движения в результате которого человек может получить травму (падения, ушибы и т.д.).
Согласно гипотезе о статической электризации тел при соприкосновении двух разноразрядных веществ из-за неравновестности атомных и молекулярных сил на их поверхности происходит перераспределение электронов (в жидкостях и газах еще и ионов) с образованием двойного электрического слоя с противоположными знаками электрических зарядов. Таким образом, между соприкасающимися телами, особенно при их трении, возникает контактная разность потенциалов, значение которой зависит от ряда факторов – диэлектрических свойств материалов, значения их взаимного давления при соприкосновении, влажности и температуры поверхностей этих тел, климатических условий.
При последующем разделении этих тел каждое из них сохраняет свой электрический заряд, а с увеличением расстояния между ними (при уменьшении электрической емкости системы) за счет совершаемой работы по разделению зарядов, разность потенциалов возрастает и может достигнуть десятков и сотен киловольт.
При одинаковых значениях диэлектрической постоянной e соприкасающихся материалов электростатические заряды не возникают.
При статической электризации во время технологических процессов, сопровождающихся трением, размельчением твердых частиц, пересыпанием сыпучих материалов, переливанием диэлектрических жидкостей (нефтепродуктов и т.п.) на изолированных от земли металлических частях оборудования возникают, относительно земли, напряжения порядка десятков киловольт. Так, например, при движении резиновой ленты транспортера и в устройствах ременной передачи на ленте (ремне) и на роликах транспортера (шкивах) из-за некоторой пробуксовки возникают заряды противоположных знаков и большого значения, а разность и потенциалов достигает 45 кВ. Аналогично происходит электризация при сматывании (наматывании) тканей, бумаги, полиэтиленовой пленки и др.
При относительной влажности воздуха 85% и более разрядов статического электричества практически не возникает. В аэрозолях электрические заряды возникают от трения частиц вещества друг о дуга и о воздух во время движения.
Применяемое в электроустановках минеральное масло, в процессе его переливания, например, слив трансформаторного масла в бак, также подвергается электризации.
Электрические заряды, образующиеся на частях производственного оборудования и изделиях, могут взаимно нейтрализовываться вследствие некоторой электропроводности влажного воздуха, а также стекать в землю по поверхности оборудования, но в некоторых случаях, когда заряды велики и разность потенциалов также велика, то (при малой влажности воздуха) может произойти быстрый искровой разряд между наэлектризованными частями оборудования или на землю. Энергия такой искры может оказаться достаточной для воспламенения горючей ил взрывоопасной смеси. Например для многих паро- и газо-воздушных взрывоопасных смесей требуется небольшая энергия (0.1*10-3Втс). Практически при напряжении 3 кВ искровой разряд вызывает воспламенение паро- и газо-воздушных взрывоопасных смесей, а при 5 кВ – большей части горючих пылей и волокон.
2. Меры подавления статической электризации.
Устранение образования значительных статического электричества достигается при помощи следующих мер:
· Заземление металлических частей производственного оборудования;
· Увеличение поверхностной и объемной проводимости диэлектриков;
· Предотвращение накопления значительных статических зарядов путем установки в зоне электрозащиты специальных неитрализаторов.
Все проводящее оборудование и электропроводящие неметаллические предметы должны быть заземлены независимо от применения других мер защиты от статического электричества.
Неметаллическое оборудование считается заземленным, если сопротивление стекания тока на землю с любых точек его внешней и внутренней поверхностей не превышает 107 Ом при относительной влажности воздуха 60%. Такое сопротивление обеспечивает достаточно малое значение постоянной времени релаксации зарядов.
Заземление устройства для защиты от статического электричества, как правило, соединяется с защитными заземляющими устройствами электроустановок. Практически, считают достаточным сопротивление заземляющего устройства для защиты от статического электричества около 100 Ом. К заземляющему устройству присоединяют отдельными ответвлениями от магистрали аппараты и машины, являющиеся источниками статической электризации (смесители, вальцы, каландры, дробилки, сливно-наливные устройства нефтепродуктов и др.). Автоцистерны во время слива или налива горючих жидкостей заземляют переносным заземлением в виде гибкого многопроволочного провода.
Эффективным способом подавления электризации нефтепродуктов является введение в основной продукт специальных присадок, например, элеата хрома, элеата кобальта и др. Кроме того с целью уменьшения статической электризации при сливе нефтепродуктов и других горючих жидкостей необходимо избегать падения и разбрызгивания струи с высоты; сливной шланг (рукав) следует опускать до самого дна цистерны или другой емкости. Неметаллические наконечники этих сливных шлангов во избежание протекания на землю или незаземленные части оборудования необходимо заземлять гибким медным проводником.
Для повышения электропроводности резинотехнических изделий в их состав вводят такие антистатические вещества, как графит и сажа. Такие присадки вводят в резиновые шланги для налива и перекачки ЛВЖ, что в значительной мере снижает опасность воспламенения этих жидкостей при переливании их в передвижные емкости (автоцистерны, железнодорожные цистерны).
14. Источники воспламенения и методы борьбы с ними
Источники возгорания
Явления, обеспечивающие тепловую энергию, могут быть сгруппированы в четыре основные категории по их происхождению (Сакс, 1979 г.):
1. Тепловая энергия, генерируемая при химических реакциях (тепло окисления, тепло горения, тепло растворения, спонтанное нагревание, тепло разложения и т.п.).
2. Электротепловая энергия (тепло сопротивления, тепло индукции, тепло от дуговых разрядов, электрических искр, электростатических разрядов, тепло, образуемое ударом молнии, и т.п.).
3. Механическая тепловая энергия (тепло трения, искры от трения).
4. Тепло, образуемое ядерным распадом.
15. Самовозгорание веществ. Виды самовозгорания.
Самовозгорание присуще всем твердым горючим веществам и материалам. Сущность этого процесса заключается в том, что при продолжительном воздействии на материал тепла происходит аккумуляция (накопление) его в материале, и, при достижении температуры самонагревания, происходит тление или воспламенение последнего. При этом продолжительно; аккумуляции тепла в материале может продолжаться от нескольких дней до нескольких месяцев. Наиболее распространенными источниками тепла являются:
- тепло, выделяемое различными нагревательными приборами;
- тепло химических реакций;
- тепло микробиологических реакций.
Самовозгорание, происходящее в процессе самонагревания материалов под действием постороннего источника нагревания, называется тепловым самовозгоранием.
Тепло обыкновенного трубопровода горячей воды или пара может явиться тем источником тепла, которого достаточно для самовозгорания изделий из ткани, бумаги или древесины. Напомним, что температура горячей воды в системе отопления достигает +150°С, а пара - +130°С. Поэтому в правилах пожарной безопасности записано, что трубопроводы горячей воды или пара необходимо ограждать только экранами из негорючих материалов. В общественных зданиях допускаются декоративные решетки, но и в первом и во втором случаях расстояние от трубопроводов до экранов, а равно и до любого сгораемого материала (занавески, например) должно быть не менее 100 мм.
Часто мы становимся свидетелями тления и горения угля в кучах, торфа и хлопка, неоднократно отмечены случаи самовозгорания толи в рулонах, целофана и целлулоида, бумаги, а также материалов, содержащих нитроцеллюлозную основу, при хранении в больших кипах и пакетах. Температура самонагревания торфа и бурого угля составляет 50-60°С, хлопка - 120°С, бумаги - 100°С, поливинилхлоридного линолеума -80°С и т.д.
Как видите, для большинства самовозгорающихся веществ температура самонагревания не превышает 150°С.
Общее требование пожарной безопасности для случаев теплового самовозгорания формулируется довольно просто: безопасной температурой длительного нагрева вещества считается температура, не превышающая 90% температуры самонагревания.
Химическое самовозгорание связано со способностью веществ и материалов вступать в химическую реакцию с воздухом или другими окислителями при нормальных условиях с выделением теплоты, достаточной для их возгорания. Наиболее характерными примерами являются случаи самовозгорания промасленной ветоши или фосфора на воздухе, легковоспламеняющихся жидкостей при контакте с марганцовкой, древесных опилок с кислотами и пр. Поэтому мы говорим: "Окислителям - бой!" - и подразумеваем, что хранение веществ и материалов должно отвечать требованиям их совместимости.
Другой вид химических реакций веществ связан с взаимодействием воды или влаги. При этом также выделяется достаточная для самовозгорания веществ и материалов температура. Примерами могут служить такие вещества, как калий, натрий, карбид кальция, негашеная известь и др. Особенностью щелочноземельных металлов является их способность гореть и без доступа кислорода. Необходимый для реакции кислород они добывают сами, расщепляя под действием высокой температуры влагу воздуха на водород и кислород. Вот почему тушение водой таких веществ приводит к взрыву образующегося водорода.
И, наконец, микробиологическое самовозгорание связано с деятельностью мельчайших насекомых. Они в невиданных количествах размножаются в спрессованных материалах, поедают все органическое и там же умирают, вместе со своим разложением выделяя определенную температуру, которая накапливается внутри материала. Наиболее характерным примером является самовозгорание прошлогодних скирд сена.
16. Пожары, компоненты системы пожара
Пожар — неуправляемое, несанкционированное горение веществ, материалов и газовоздушных смесей вне специального очага, и приносящие значительный материальный ущерб, поражение людей на объектах и подвижном составе, которое подразделяется на наружные и внутренние, открытые и скрытые.
Причинами возникновения пожаров чаще всего являются: неосторожное обращение с огнем, несоблюдение правил эксплуатации производственного оборудования, самовозгорание веществ и материалов, разряды статического электричества, грозовые разряды, поджоги. В зависимости от места возникновения различают: пожары на транспортных средствах; степные и полевые пожары; подземные пожары в шахтах и рудниках; торфяные и лесные пожары; пожары в зданиях и сооружениях. Последние, в свою очередь, подразделяются на наружные (открытые), при которых хорошо просматриваются пламя и дым, и внутренние (закрытые), характеризующиеся скрытыми путями распространения пламени.
Пространство, охваченное пожарами, условно разделяют на 3 зоны — активного горения (очаг пожара), теплового воздействия и задымления. Внешними признаками зоны активного горения является наличие пламени, а также тлеющих или раскалённых материалов. Основной характеристикой разрушительного действия пожара является температура, развивающаяся при горении. Для жилых домов и общественных зданий температуры внутри помещения достигают 800—900 °С. Как правило, наиболее высокие температуры возникают при наружных пожарах и в среднем составляют для горючих газов 1200—1350 °C, для жидкостей 1100—1300 °C, для твёрдых веществ 1000—1250 °C. При горении термита, электрона, магния максимальная температура достигает 2000-3000 °C.
Пространство вокруг зоны горения, в котором температура в результате теплообмена достигает значений, вызывающих разрушающее воздействие на окружающие предметы и опасных для человека, называют зоной теплового воздействия. Принято считать, что в зону теплового воздействия, окружающую зону горения, входит территория, на которой температура смеси воздуха и газообразных продуктов сгорания не меньше 60-80 °С. Во время пожара происходят значительные перемещения воздуха и продуктов сгорания. Нагретые газообразные продукты сгорания устремляются вверх, вызывая приток более плотного холодного воздуха к зоне горения. При пожарах внутри зданий интенсивность газового обмена зависит от размеров и расположения проёмов в стенах и перекрытиях, высоты помещений, а также от количества и свойств горящих материалов. Направление движения нагретых продуктов обычно определяет и вероятные пути распространения пожара, так как мощные восходящие тепловые потоки могут переносить искры, горящие угли и головни на значительное расстояние, создавая новые очаги горения. Выделяющиеся при пожаре продукты сгорания (дым) образуют зону задымления. В состав дыма обычно входят азот, кислород, оксид углерода, углекислый газ, пары воды, а также пепел и др. вещества. Многие продукты полного и неполного сгорания, входящие в состав дыма, обладают повышенной токсичностью, особенно токсичны продукты, образующиеся при горении полимеров. В некоторых случаях продукты неполного сгорания, например, оксид углерода, могут образовывать с кислородом горючие и взрывоопасные смеси.
Для того, чтобы произошло возгорание необходимо наличие трёх условий:
- Горючие вещества и материалы
- Источник зажигания — открытый огонь, химическая реакция, электроток.
- Наличие окислителя, например кислорода воздуха.
Для того, чтобы произошёл пожар необходимо выполнение ещё одного условия: наличие путей распространения пожара — горючих веществ, которые способствуют распространению огня.
Сущность горения заключается в следующем — нагревание источников зажигания горючего материала до начала его теплового разложения. В процессе теплового разложения образуется угарный газ, вода и большое количество тепла. Выделяется также углекислый газ и сажа, которая оседает на окружающем рельефе местности. Время от начала зажигания горючего материала до его воспламенения — называет временем воспламенения.