Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Физическая реализация звена. Примером колебательного звена является электрический колебательный контур, груз на пружине, маятник




Примером колебательного звена является электрический колебательный контур, груз на пружине, маятник, стрелочный прибор.

Переходная характеристика.

Переходная характеристика колебательного звена имеет вид:

h(t) = L-1[W(s)/s)] = L-1[K/[s·(T2s2 + 2T ξs +1)]] =

Переходная функция имеет достаточно сложный вид, но наиболее характерно то, что имеется экспоненциальное затухание переходного процесса с коэффициентом - ξ/T,атакже колебательность с частотой .

Здесь важно отметить, что частота зависит от коэффициента затухания. При ξ → 0 ωк → 1/T; при ξ → 1 ωк → 0.

Весовая функция.

Весовая функция колебательного звена имеет вид:

w(t) = L-1[W(s)] = L-1[K/(T2s2 + 2T ξ s +1)] =

Рис. 4.4. Переходная и весовая характеристики колебательного звена.

Частотные характеристики.

Частотные характеристики колебательного звена имеют следующий вид:

W(jω) = K/(T2·(–jω)2 + 2T ξ ·jω + 1) =

Переход к асимптотической ЛАХ: заменяем истинную ЛАХ – ломаной асимптотической. Выделим области низких и высоких частот и по отдельности рассмотрим поведение ЛАХ в этих областях.

Область низких частот: Tw << 1; т.е. w << 1/T; можно пренебречь выражением T2w2. Получаем: L(w) = 20lgK. Это горизонтальная прямая.

Область высоких частот: Tw >> 1; т.е. w >> 1/T; можно пренебречь 1 в сравнении с выражением T2w2. Получаем L(w) = 20lgK – 40lg(Tw). Это – уравнение прямой с наклоном -40дб/декаду.

 

Рис. 4.5. АФЧХ, ЛАХ и ЛФХ колебательного звена.

Точке пересечения этих прямых соответствует сопрягающая частота ω1 = 1/T.

Принципиальное отличие ЛАХ колебательного звена от ЛАХ инерционных звеньев состоит в том, что в районе сопрягающей частоты ωс = 1/T имеется максимум (так называемый "горб"), из-за чего поведение асимптотической ЛАХ в этой области может существенно отличаться от истинной. Это явление называется резонансом. При этом максимум усиления амплитуды достигается при частоте:

, а .

 

Как видно из приведенного выражения, резонанс в колебательном звене может возникнуть только при малых значениях a (), т.е. когда рассеяние энергии во внешнюю среду невелико.

Также надо отметить, что сопрягающая частота (ωс), частота собственных колебаний (ωк) и резонансная частота (ωmax) колебательного звена не совпадают. Однако при малых значениях параметра ξ, когда явление резонанса проявляется достаточно сильно, разница между ωс, ωк и ωmax мала, и на практике эти частоты обычно считают равными ω* = 1/T.

Интегрирующее звено

Передаточная функция.

Передаточная функция интегрирующего звена имеет вид:

W(s) = K/s = 1/T·s, где K – коэффициент усиления; T – постоянная времени (время интегрирования); T = 1/K.





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 1073 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2254 - | 2184 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.