Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Свободнорадикальное (перекисное) окисление мембран и их антиоксидантная защита.




Важным механизмом повреждения клеточных мембран является свободнорадикальное (перекисное) окисление. Этот универсальный механизм повреждения встречается в патогенезе гепатитов, инфаркта миокарда, панкреатита и других болезней. В норме умеренное образование свободных радикалов (активные формы кислорода, перекись водорода и другие вещества с незавершенным внешним электронным слоем) постоянно происходит в клетке. Свободные радикалы постоянно атакуют мембраны клеток (особенно "хвосты" фосфолипидов), что может нарушить их структуру и функции. Этому успешно противостоят антиоксидантные системы: экзогенная (препараты селена, витамины Е, С) и эндогенная (ферменты каталаза, супероксиддисмутаза, убихинон).

При интенсификации образования свободных радикалов под влиянием повреждающих факторов болезни (вирусы, радиация) происходит резкое увеличение перекисного окисления липидов (ПОЛ) мембран и нарушение их функций.

Поиск эффективных антиоксидантов ведет к созданию новых действенных препаратов для лечения заболеваний, которые сопровождаются интенсификацией ПОЛ.

Клетка представляет собой сложную структуру, состоящую из разнообразных органоидов и клеточных жидкостей (цитозоль, гиалоплазма, кариоплазма…). По строению и наличию клеток все живые организмы делят на 3 группы: прокариоты, эукариоты, вирусы.

Прокариоты – безъядерные клетки. Основные представители прокариотов бактерии, сине-зеленые водоросли.

Эукариоты – клетки содержащие ядра. Основные представители эукариотов: животные, растения, грибы.

Вирусы (в т.ч. бактериофаги) не имеют клеточного строения, но они не проявляют признаков жизни вне контакта с клетками прокариотов и эукариотов. По этой причине предположение клеточной теории Шванна и Шлейдена о невозможности жизни вне клеток не потеряло своей актуальности и после открытия вирусов.

Методические указания для самоподготовки к занятию № 3.

Тема. Мембраны и органоиды клетки. Клеточная теория.

Цель самоподготовки. Расширить и закрепить представления по вопросам темы.

Вопросы для самостоятельного изучения задания.

1. Современные представления о составе липидов мембран клетки.

2. Влияние состава мембран на их свойства.

3. Лабильность и стабильность липидного бислоя.

4. Липосомы и мицеллы.

5. Значение знаний о составе липидов мембран клетки. Примеры из фармакологии и токсикологии.

Блок дополнительной информации.

Мембранные липиды.

Рис. 1. Схема строения клеточной мембраны.

Всостав мембран входят липиды следующих классов:

1 - фосфолипиды (ФЛ),

2- сфинголипиды (СЛ),

3- гликолипиды (ГЛ),

4- стероиды, а именно холестерин (ХС).

 

 

Рис.2. Классы мембранных липидов

Именно липиды первых трех перечисленных классов имеют то характерное строение (гидрофильная «головка» и два гидрофобных «хвоста»), которое показано в общем виде на рис. 1.

У фосфолипидов (ФС) (рис. 2а) в состав «головки» обычно входят последовательно связанные друг с другом остатки азотсодержащего основания (холина, коламина или серина), фосфатной группы и трехатомного спирта глицерина. Всё это полярные группировки (поскольку содержат много гетероатомов), и потому они являются гидрофильными. Остатки же жирных кислот (ЖК), образующие гидрофобные «хвосты», соединены с глицерином. В качестве насыщенной кислоты часто выступает пальмитиновая кислота, а в качестве ненасыщенной — олеиновая кислота. В месте нахождения двойной связи углеводородная цепь делает изгиб на 40°. Поэтому, несмотря на различие С- атомов в олеиновой и пальмитиновой кислотах, длина обоих «хвостов» оказывается практически одинаковой. Это облегчает образование двойного слоя (бислоя).

В мембранах имеются и такие ФЛ, чья структура несколько отличается от схемы, приведенной на рис. 2а. Например, кардиолипины (рис. 3) — это две фосфатидные кислоты, связанные друг с другом через глицерин. Соответственно, в этих молекулах — 4 углеводородных «хвоста» и более объемная, чем обычно, гидрофильная «головка».

 

Рис. 3. Схема кардиолипина.

Сфинголипиды (СЛ, рис. 2б), по сравнению с ФЛ, состоит в том, что вместо глицерина и одной из жирных кислот они включают сфингозин (он же сфингенин) — двухатомный аминоспирт, содержащий 18 С-атомов и 1 двойную связь. Поэтому начальная часть сфингозина входит в гидрофильную «головку» СЛ, а последующая углеводородная цепь служит одним из гидрофобных «хвостов».

Типичный представитель СЛ — сфингомиелин, где в качестве азотсодержащего основания выступает холин.

Гликолипиды (ГЛ, рис. 2в) тоже содержат остаток сфингозина. Но в состав гидрофильной «головки» вместо азотсодержащего основания и фосфатной группы входит какой-либо углевод (У). По природе последнего ГЛ подразделяются на две группы: цереброзиды (здесь У — галактоза или глюкоза) и ганглиозиды (У — олигосахарид, причем обычно разветвленный). В качестве же ЖК гликолипиды часто содержат особые кислоты — нервоновую или цереброновую. Так, первая из них содержит 24 С-атома и 1 двойную связь 24Л).

Несколько особняком стоит структура четвертого класса мембранных липидов — стероидов, точнее, их основного представителя — холестерина (ХС). Он (рис. 4.), как известно, представляет собой вытянутую систему четырех углеводородных циклов и углеводородную же боковую цепь. За исключением одной гидроксигруппы, ХС — гидрофобное соединение.

Рис. 4. Холестерин в структуре мембраны.

 

В силу своей гидрофобности, в мембране ХС находится, в основном, в срединной зоне бислоя, и лишь гидроксигруппа примыкает к «головкам» липидов. При этом вытянутые молекулы ХС ориентированы параллельно углеводородным цепям указанных липидов.

Каждый вид мембран отличается строго определенным содержанием вышеперечисленных классов липидов. И это во многом определяет свойства данных мембран.

Отношение белок/липиды в среднем близко к 1:1, но в ряде случаев оно значительно отклоняется от этого уровня. Миелиновые оболочки сильно обогащены липидами, а внутренняя мембрана митохондрий — белками.

Внешние мембраны значительно богаче внутренних по содержанию таких компонентов, как углеводы, сфинго- и гликолипиды, холестерин.

ГЛ и ХС условно называют «стабилизирующие». Во внутренних мембранах таких липидов почти нет, т. е. соотношение сильно сдвинуто в сторону «дестабилизирующих» липидов — в основном ФЛ.

ВлияниеФЛ и СЛ. Эти липиды, как мы знаем, включают непредельные углеводородные «хвосты». Причем среди них встречаются остатки не только олеиновой кислоты, но и полиненасыщенных кислот — линолевой, линоленовой, арахидоновой и других. Но, известно, в каждом месте нахождения двойной связи углеводородная цепь имеет изгиб. А изгибы затрудняют взаимодействие соседних цепей, что делает структуру бислоя менее упорядоченной. Поэтому по мере увеличения содержания в мембране ФЛ и СЛ возрастают все показатели ее лабильности: повышается латеральная диффузия компонентов мембраны (из-за уменьшения взаимодействия между молекулами); увеличивается диффузия соответствующих веществ (например, неполярных соединений) через мембрану (т.к. возрастают промежутки между «хвостами» липидов); повышается способность мембран к разрыву. Все это и объясняет, почему ФЛ и СЛ называют «дестабилизирующие» липиды.

Влияние ХС и ГЛ.Данные же липиды оказывают на лабильность мембраны два противоположных действия. С одной стороны, они вносят дезорганизацию в расположение углеводородных «хвостов»: ХС — за счет внедрения между последними, а ГЛ — из-за более длинных, чем обычно, остатков нервоновой и цереброновой кислот. Это несколько дестабилизирует мембраны. Но, с другой стороны, те же факторы (наличие ХС между липидами и длинные «хвосты» ГЛ, почти лишенные двойных связей) препятствуют активному перемещению липидов. А это, напротив, оказывает стабилизирующее действие, которое в итоге и перевешивает. По данной причине ХС и ГЛ отнесены к разряду «стабилизирующих» мембранных липидов.

Поскольку во внутренних мембранах клеток этих липидов (ХС и ГЛ) очень мало, можно сделать вывод: данные мембраны более лабильны, чем внешние. Т. е. они более текучи (выше латеральная диффузия), более проницаемы и более склонны к разрыву. Все эти свойства могут меняться со временем и для одной и той же мембраны. Причиной этому обычно служит изменение ее липидного состава. Пример — мембраны сперматозоида. В них высоко содержание ФЛ с большим количеством двойных связей в «хвостах». Это, значительно лабилизирует (делает подвижными, текучими) мембраны. Кроме того, в женских половых путях секретируется белок, нагруженный ФЛ. Эти ФЛ с данного белка переходят в состав мембран сперматозоидов в обмен на ХС. Таким образом, соотношение между «дестабилизирующими» и «стабилизирующими» липидами еще больше сдвигается в пользу первых. Поэтому лабильность мембран сперматозоидов, уже и так высокая, достигает критического предела. Мембраны головок сперматозоидов - "камикадзе" легко разрываются при контакте с оболочками яйцеклетки, обеспечивая, их растворение и подготавливая оплодотворение.

Кроме лабильности, от липидного состава зависят и другие свойства мембран.





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 1157 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2540 - | 2236 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.