Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Дипольный момент диэлектрика. Диэлектрическая восприимчивость веществ.




16) Дипольный момент диэлектрика (P) - векторная физическая величина, характеризующая, наряду с суммарным зарядом, электрические свойства системы заряженных частиц в смысле создаваемого ею поля и действия на неё внешних полей.

Диэлектрическая восприимчивость вещества - физическая величина, мера способности вещества поляризоваться под действием электрического поля.

Диэлектрическая восприимчивость — коэффициент линейной связи между поляризацией

диэлектрика P и внешним электрическим полем E в достаточно малых полях:

 

 

    17.Вектор электрического смещения
   

 

Имеем границу раздела двух сред с и , так что, (рис. 4.10, а).

 

а б

Рис. 4.10

Как мы уже показали, в соответствии с (4.1.10),

или ,

т.е., напряженность электростатического поля E изменяется скачком при переходе из одной среды в другую.

Главная задача электростатики – расчет электрических полей, то есть в различных электрических аппаратах, кабелях, конденсаторах, и т.д. Эти расчеты сами по себе не просты, да еще наличие разного сорта диэлектриков и проводников еще более усложняют задачу.

Для упрощения расчетов была введена новая векторная величина – вектор электрического смещения (электрическая индукция):

  (4.3.1)  

Из предыдущих рассуждений , тогда , отсюда

  (4.3.2)  

Таким образом, вектор остается неизменным при переходе из одной среды в другую (рис. 4.10, б), и это облегчает расчет . Зная и ε, легко рассчитывать

, отсюда можно записать:

  (4.3.3)  

где – вектор поляризации, χ – диэлектрическая восприимчивость среды, характеризующая поляризацию единичного объема среды.

Таким образом, вектор – есть сумма (линейная комбинация) двух векторов различной природы: – главной характеристики поля и – поляризации среды.

В СГС: поэтому в вакууме и размерность у и одинакова.

В СИ: , т. е. это заряд, протекающий через единицу поверхности.

Для точечного заряда в вакууме

Для имеет место принцип суперпозиции, как и для , т.е.

 

18.С е г н е т о э л е к т р и к и - вещества, обладающие спонтанной поляризацией, направление которой может быть изменено с помощью внешнего электрического поля. Сегнетоэлектрики обладают рядом специфических свойств, которые проявляются лишь в определенном диапазоне температур. Температура Тк (сегнетоэлектрическая точка Кюри) является температурой фазового перехода, ниже этой температуры сегнетоэлектрик обладает доменной структурой и характерными сегнетоэлектрическими свойствами; выше этой температуры происходит распад доменной структуры и сегнетоэлектрик переходит в параэлектрическое состояние. Следствием доменного строения сегнетоэлектриков являются нелинейная зависимость их поляризованности или электрической индукции от напряженности электрического поля (см. рисунок 7.8), которая носит название диэлектрической петли гистерезиса, и резко выраженная температурная зависимость диэлектрической проницаемости, в которой максимум диэлектрической проницаемости достигается при температуре, соответствующей точке Кюри.

 

Рис. 7.8. Основные нелинейные свойства сегнетоэлектриков

а – диэлектрический гистерезис; б – динамическая нелинейность; в–нелинейный ток через сегнетоконденсатор; г – эффективная нелинейность; д – реверсивная нелинейность; с – амплитудная модуляция.

 

На рисунке приведены зависимости основных параметров сегнетоэлектриков (поляризации, диэлектрической проницаемости, тока и напряжения на обкладках сегнетоконденсатора), характеризующих нелинейные свойства в зависимости от напряженности электрического поля (зависимости а),б),г),д)) и времени приложения переменного электрического поля (зависимости в) и е)).

 

19.Сила тока — физическая величина, равная отношению количества заряда , прошедшего через некоторую поверхность за время, к величине этого промежутка времени

 

 

Пло́тность то́ка — векторная физическая величина, имеющая смысл силы электрического тока, протекающего через элемент поверхности единичной площади]. При равномерном распределении плотности тока и сонаправленности её с нормалью к поверхности, через которую протекает ток, для величины вектора плотности тока выполняется:

где I — сила тока через поперечное сечение проводника площадью S

Закон Ома для участка цепи:

— сила тока в цепи,

— сопротивление всех внешних элементов цепи,

— напряжение

 

 

20) Закон Ома в дифференциальной форме.

σ – удельная проводимость

- напряженность электрического поля

 

21) Электродвижущая сила (ЭДС) – Это физическая величина, равная отношению работы, совершенной сторонними силами при перемещении электрического заряда по замкнутой цепи, к этому заряду (ε) [В]

 

 

Закон Ома для полной цепи:

E- ЭДС

R - сопротивление цепи

r- внутреннее сопротивление источника

 

Правила Кирхгофа.

Правила Кирхгофа – это соотношения между токами и напряжениями, выполняемые на участках произвольной электрической цепи.

Формулировка правил осуществляется через вспомогательные понятия узла, контура и ветви электрической цепи:

1. Ветвь электрической цепи – любой входящий в цепь двухполюсник.

2. Узел электрической цепи (точка разветвления) – точка соединения нескольких ветвей (от 3 и больше)

3. Под контуром электрической цепи понимают замкнутый цикл ветвей, то есть такой путь по цепи, однократное прохождение которого (через ветви и узлы) заканчивается в узле, с которого был начат проход.

Первое правило.

Рассмотрим первое правило Кирхгофа, иначе называемое правилом токов Кирхгофа. Оно вытекает из закона сохранения заряда и звучит следующим образом: алгебраическая сумма всех токов в любом узле произвольной цепи равняется нулю. В виде формулы это выглядит так: I1+I2+..In=0

При расчете, токи, втекающие в узел, считаются со знаком «плюс», а вытекающие из узла – со знаком «минус».

Второе правило

Правило напряжений Кирхгофа, чаще называемое вторым правилом Кирхгофа, является следствием закона сохранения заряда. Оно звучит следующим образом: алгебраическая сумка падений напряжений, на всех ветвях произвольного замкнутого контура, равняется алгебраической сумме ЭДС (электродвижущих сил) ветвей этого контура. Если в данном контуре нет источников ЭДС (идеальных источников напряжения), то сумма падение напряжений в этом контуре равна нулю. В виде формулы это выглядит так: E1+E2+…+En=R1*I1+R2*I2+…+RnIn

При расчете, падение напряжения исходят из следующих правил: если ток в ветви совпадает с выбранным направлением обхода контура, то падение напряжения на этой ветви считают со знаком «плюс». Если ток в ветви направлен против направления обхода контура, то падение напряжения берут со знаком «минус». В частном случае расчета цепи из одного контура, второе правило Кирхгофа вырождается в закон Ома для цепи.

Законы Вольта.

1. При тесном соприкосновении двух разнородных металлов между ними возникает разность потенциалов. Контактная разность потенциала зависит от их химического состава контактирующих веществ и их температуры.

2. Для нескольких контактных веществ контактная разность определяется первым и последним потенциалом

Контактные явления.

Контактные явления – явления, возникающие при прохождении электрического тока через контакт полупроводника с металлом или через контакт двух различных полупроводников с разным типом носителей заряда и их концентрацией.

 





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 860 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2240 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.217 с.