Электрический потенциал можно представить графически, изображая эквипотенциальные линии или в трех измерениях - эквипотенциальные поверхности. Всем точкам эквипотенциальной поверхности соответствует один и тот же потенциал. Иначе говоря, разность потенциалов между любыми двумя точками этой поверхности равна нулю, и при перемещении заряда из одной точки в другую работа не совершается.
Эквипотенциальная поверхность в любой точке должна быть перпендикулярна направлению напряженности электрического поля. Если бы это было не так (т. е. если бы существовала компонента Е, параллельная поверхности), то для перемещения заряда вдоль поверхности в направлении, противоположном этой компоненте Е, приходилось бы совершать работу, что противоречит предположению об эквипотенциальности поверхности.
Тот факт, что силовые линии электрического поля перпендикулярны эквипотенциальным поверхностям, помогает построению эквипотенциальных поверхностей, если известно расположение силовых линий.
Рис. 24.2. Эквипотенциальные линии (штриховые) между двумя заряженными параллельными пластинами, перпендикулярные силовым линиям поля (сплошные линии).
На рис. 24.2 изображено несколько эквипотенциальных линий (штриховые линии) для поля между параллельными пластинами, разность потенциалов которых составляет 20 В. Эти линии принадлежат эквипотенциальным поверхностям, которые пересекают рисунок перпендикулярно плоскости книжной страницы. Потенциал отрицательной пластины условно принят за нулевой; указан соответствующий потенциал каждой эквипотенциальной линии. Эквипотенциальные линии для случая двух равных по величине и противоположных по знаку зарядов показаны штриховыми линиями на рис. 24.3.
Рис. 24.3. Эквипотенциальные линии (штриховые) и силовые линии электрического поля (сплошные линии) вблизи двух противоположно заряженных частиц.
12.Работа электростатического поля по перемещению заряда. | |
а) Однородное электростатическое поле: в каждой точке поля. . Следовательно: | W=qEr |
Т.к. если вектор перемещения перпендикулярен вектору силы (напряженности поля), работа поля равна нулю, то работа электростатического поля по перемещению заряда по любой траектории определяется разностью координат этих точек. | |
Если обозначить координаты заряда в начальной и последующей точках r1 и r2, то: Т.е. работа равна разности двух эквивалентных величин, зависящих от характера взаимодействия и взаимного расположения. Но мы знаем, что работа - мера изменения энергии. Можно предположить: W=qEr - потенциальная энергия заряда в данной точке электростатического поля. Зависит от выбора начальной точки отсчета потенциальной энергии. | |
Тогда: - наиболее общий способ расчета работы в электростатическом поле | |
Т. е. работа при перемещении заряда между двумя точками в электростатическом поле - не зависит от формы траектории, а зависит от положения этих точек. - равна убыли потенциальной энергии заряда в этом поле; - работа по замкнутой траектории равна нулю. | |
Электростатическое поле, как и гравитационное, потенциальное: А = - mg(h2— h1) = -ΔW | |
б) Произвольное электростатическое поле. При перемещении заряда в произвольном поле из точки 1 в точку 2 работа должна быть равна по величине и противоположна по знаку работе в направлении от точки 2 к точке 1. В противном случае нарушается закон сохранения энергии: ПустьА12 < A21. Тогда внешняя сила может перемещать заряд по пути 12, а силы поля - по пути 21. Мы будем получать выигрыш в работе, т.е. получим вечный двигатель, что невозможно. |
Электроемкость
Электроемкость - это скалярная величина, характеризующая способность проводника накапливать электрический заряд
Электроемкость зависит от формы проводника! Поэтому для каждого вида существует своя формула расчета электроемкости.
Электроемкость шара
Уединенным будем называть проводник, размеры которого много меньше расстояний до окружающих тел. Пусть это будет шар радиусом r. Если потенциал на бесконечности принять за 0, то потенциал заряженного уединенного шара равен: , где - диэлектрическая проницаемость окружающей среды. Следовательно:
Эта величина не зависит ни от заряда, ни от потенциала и определяется только размерами шара (радиусом) и диэлектрической проницаемостью среды. Этот вывод справедлив для проводника любой
формы. Электрической емкостью проводника называется отношение заряда проводника к его потенциалу: .
Электрическая емкость уединенной проводящей сферы радиусом R, находящейся в бесконечной среде с диэлектрической проницаемостью ε,
Если уединенным проводником является заряженная сфера, то потенциал поля на ее поверхности:
,
где R — радиус сферы, ε — диэлектрическая проницаемость среды, в которой находится проводник.
14.Конденсаторы (condensare - сгущение) . Можно создать систему проводников, емкость которой не зависит от окружающих тел. Первые конденсаторы - лейденская банка (Мушенбрук, сер. XVII в.). | |
Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники наз. обкладками конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок. | |
На рисунке - плоский и сферический конденсаторы. Поле плоского конденсатора почти все сосредоточено внутри (у идеального - все). Усферического - все поле сосредоточено между обкладками. | |
Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками: . | |
При подключении конденсатора к батарее аккумуляторов происходит поляризация диэлектрика внутри конденсатора и на обкладках появляютсязаряды - конденсатор заряжается. Электрические поля окружающих тел почти не проникают через металлические обкладки и не влияют на разность потенциалов между ними. | |
Емкость плоского конденсатора. , т.о. емкость плоского конденсатора зависит только от его размеров, формы и диэлектрической проницаемости. Для создания конденсатора большой емкости необходимо увеличить площадь пластин и уменьшить толщину слоя диэлектрика. | |
Емкость сферического конденсатора. Если зазор между обкладками мал по сравнению с радиусами, то формула переходит в формулу емкости плоского конденсатора. | |
Виды конденсаторов | |
При подключении электролитического конденсатора необходимо соблюдать полярность. | |
Назначение конденсаторов 1. Накапливать на короткое время заряд или энергию для быстрого изменения потенциала. 2. Не пропускать постоянный ток. 3. В радиотехнике: колебательный контур, выпрямитель. 4. Фотовспышка. |
Диэлектрики
Диэлектрики – вещества, обладающие малой электропроводностью, т.к. у них очень мало свободных заряженных частиц – электронов и ионов. Эти частицы появляются в диэлектриках только при нагреве до высоких температур. Существуют диэлектрики газообразные (газы, воздух), жидкие (масла, жидкие органические вещества) и твердые (парафин, полиэтилен, слюда, керамика и т.п.).
При наложении электрического напряжения в диэлектрике, представляющем сложную электрическую систему, протекают разнообразные электрические процессы, связанные с его поляризацией, электрической проводимостью. В случае очень большого напряжения может произойти разрушение диэлектрика, называемое пробоем. Эти процессы определяют свойства диэлектриков, а, следовательно, надежность их работы в радиоустройствах, поэтому рассмотрим эти процессы.
Поляризация диэлектриков
Происходит вследствие смещения электрических зарядов в диэлектрике атомов, молекул, ионов под действием приложенного напряжения. С поляризацией диэлектрика связана одна из важнейших характеристик - диэлектрическая проницаемость вещества.
Диэлектрическая проницаемость показывает во сколько раз электрическое поле в диэлектрике меньше электрического поля в вакууме и дает возможность судить об интенсивности процессов поляризации и качестве диэлектрика. Поляризация диэлектрика определяется суммарным действием различных механизмов поляризации. Температурная и частотная зависимость диэлектрической проницаемости несут информацию о механизмах поляризации и их относительном вкладе в поляризацию диэлектрика.
Рассматривая явления поляризации необходимо отметить две группы:
упругая поляризация, протекающая практически мгновенно под действием электрического поля, не сопровождающаяся рассеянием (потерями) энергии в диэлектрике (выделением теплоты);
релаксационная поляризация, нарастающая и убывающая в течение некоторого промежутка времени и сопровождающаяся рассеянием энергии в диэлектрике, т.е. его нагреванием
Различают следующие виды поляризации.
1) Электронная поляризация
При подаче напряжения в диэлектрике создается электрическое поле, и электроны в атомах смещаются относительно ядра к положительному электроду.
Смещенные электроны с положительными зарядами ядер атомов образуют пары связанных друг с другом электрических зарядов, которые называются упругими диполями. Образование их происходит мгновенно (10-15 с). Они исчезают, если с диэлектрика снято напряжение. Этот процесс образования упругих диполей называется электронной поляризацией.
Величина зависит от концентрации атомов (молекул) в диэлектрике и их структуры, определяющей поляризуемость αэ атома (молекулы), и описывается выражением
= 1 + n αэ,
где ε – диэлектрическая проницаемость; n – концентрация частиц (атомов, молекул) в диэлектрике; αэ – электронная поляризуемость, определяемая структурой молекулы или атома.
Если диэлектрик кристалл, то у него ε больше, чем у аморфного диэлектрика, т.к. плотность упаковки атомов и молекул больше в кристаллическом состоянии.
Диэлектрическая проницаемость вещества с чисто электронной поляризацией численно равна квадрату показателя преломления света n.
ε = n 2.
Хотя деформация электронных орбит не зависит от температуры, электронная поляризация, а, следовательно, диэлектрическая проницаемость ε с увеличением температуры диэлектрика уменьшается, т.к. увеличивается его объем и уменьшается число частиц в единице объема.
2) Ионная поляризация (или поляризация ионного смещения).
Поляризация обусловлена смещением упруго связанных ионов. Характерна для твердых тел с ионным строением, т.е. для кристаллических диэлектриков. Всякий ионный кристалл состоит из положительных и отрицательных ионов, расположенных в узлах кристаллической решетки. При наложении напряжения в нем начинают действовать электрические силы, и ионы смещаются: положительные – в одном направлении, отрицательные – в противоположном. Каждая пара ионов образует упругий диполь. Время установления ионной поляризации 10-13 с. Наряду с процессом поляризационного смещения протекает электронная поляризация. Интенсивность этих процессов у кристаллических диэлектриков велика, поэтому больше ε = 7 ÷ 12 и выше.
Электронная и ионная поляризации относятся к упругой поляризации. Остальные, рассматриваемые далее, являются различными проявлениями релаксационной поляризации.
3) Дипольная релаксационная поляризация (ориентационная).
Поляризация определяется поворотом и ориентацией диполей в направлении поля и связана с тепловым движением частиц.
Диэлектрик может состоять из полярных молекул. Такая молекула состоит из положительных и отрицательных ионов и ее дипольный электрический момент
μ = q·l,
q – заряд одного из ионов; l – расстояние между центрами ионов. Такая система зарядов называется твердым диполем, а диэлектрик, состоящий из полярных молекул – полярным.
Дипольные молекулы, находящиеся в хаотическом тепловом движении, частично ориентируются под действием поля, что и является причиной поляризации. Поворот диполей в направлении поля протекает в вязкой среде и связан с совершением работы по преодолению сил вязкого сопротивления среды, поэтому дипольная поляризация связана с потерями энергии
Под действием поля ориентируются и радикалы (группы атомов) – это дипольно – радикальная поляризация.
С увеличением температуры вязкость среды уменьшается, и дипольная поляризация возрастает, пока велика вязкость. Но постепенно нарастает хаотичность теплового движения и становится преобладающей над ориентацией диполей, т.е. дипольная ориентация с ростом температуры начинает падать.
Эта поляризация свойственна газам и жидкостям, а также твердым полярным органическим веществам, имеющим в составе радикалы. Совершается за время 10-2 с. После снятия поля ориентация ослабевает (происходит релаксация).
4) Электронно – релаксационная поляризация.
Поляризация возникает за счет возбужденных тепловой энергией избыточных «дефектных» электронов или дырок. Характерна для диэлектриков с высоким показателем преломления и электронной электропроводностью, а также полупроводников.
5) Упруго – дипольная поляризация
Поляризация наблюдается у дипольных молекул некоторых кристаллов, закрепленных и только ограниченно поворачивающихся на небольшой угол.
6) Междуслойная поляризация
Поляризация обусловлена проводящими и полупроводящими включениями и наличием слоев с различной проводимостью. Поляризация проявляется в твердых телах неоднородной структуры (слоистые пластики) в области низких частот, и связана со значительными потерями электрической энергии.
7) Самопроизвольная (спонтанная) поляризация
Поляризация характерна для сегнетоэлектриков, веществ, разбивающихся на области (домены), обладающие спонтанным дипольным моментом в отсутствие внешнего поля. Взаимная ориентация дипольных моментов доменов в отсутствие поля такова, что суммарный дипольный момент вещества равен нулю. Наложение поля ориентирует дипольные моменты доменов, что вызывает очень сильную поляризацию. Поляризация нелинейно зависит от напряжения электрического поля и достигает насыщения при некотором значении напряженности электрического поля. Поэтому диэлектрическая проницаемость сегнетоэлектрика нелинейно зависит от напряженности электрического поля, достигая максимума при определенном его значении. Температурная зависимость диэлектрической проницаемости также имеет один или несколько максимумов при определенных температурах (титанаты бария и стронция). Спонтанная поляризация в сегнетоэлектриках проявляется в определенной области температур, исчезая выше некоторой температуры, называемой температурой Кюри. При этой температуре в сегнетоэлектрике наблюдается фазовый переход второго рода, т.е. изменяется тип кристаллической структуры.
8) Остаточная поляризация
Поляризация существует длительное время в диэлектрике после снятия напряжения. Этот тип поляризации наблюдается в электретах. Обладает сильной зависимостью от напряженности электрического поля и температуры.